A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Developing Scattering Morphology Resolved Total Internal Reflection Microscopy (SMR-TIRM) for Orientation Detection of Colloidal Ellipsoids. | LitMetric

Micrometer scale colloidal particles experiencing ∼ scale interactions and suspended in a fluid are relevant to a broad spectrum of applications. Often, colloidal particles are anisotropic, either by design or by nature. Yet, there are few techniques by which ∼ scale interactions of anisotropic particles can be measured. Herein, we present the initial development of scattering morphology resolved total internal reflection microscopy (SMR-TIRM). The hypothesis of this work is that the morphology of light scattered by an anisotropic particle from an evanescent wave is a sensitive function of particle orientation. This hypothesis was tested with experiments and simulations mapping the scattered light from colloidal ellipsoids at systemically varied orientations. Scattering morphologies were first fitted with a two-dimensional (2D) Gaussian surface. The fitted morphology was parameterized by the morphology's orientation angle and aspect ratio . Data from both experiments and simulations show to be a function of the particle azimuthal angle, while was a sensitive function of the polar angle. This analysis shows that both azimuthal and polar angles of a colloidal ellipsoid could be resolved from scattering morphology as well or better than using bright-field microscopy. The integrated scattering intensity, which will be used for determining the separation distance, was also found to be a sensitive function of particle orientation. A procedure for interpreting these confounding effects was developed that in principle would uniquely determine the separation distance, the azimuthal angle, and the polar angle. Tracking these three quantities is necessary for calculating the potential energy landscape sampled by a colloidal ellipsoid.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.0c02482DOI Listing

Publication Analysis

Top Keywords

scattering morphology
12
sensitive function
12
function particle
12
morphology resolved
8
resolved total
8
total internal
8
internal reflection
8
reflection microscopy
8
microscopy smr-tirm
8
colloidal ellipsoids
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!