Methylation Design Strategy to Trigger a Dual Dielectric Switch and Improve the Phase Transition Temperature.

Inorg Chem

Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, P.R. China.

Published: November 2020

Phase transitions of hybrid materials have aroused widespread concern and call for an in-depth study on its structure design, because the structure and characteristics are closely related, which promote potential applications in the field of temperature sensors, dielectric switches, and actuators. However, designing materials with multiple phase transitions and a high phase transition temperature (Tr) remains a huge challenge. In order to deal with this key hurdle, we tried to regulate the structural components and successfully synthesized [MASD][CdCl] (, MASD = 8-methyl-5-azoniaspiro[4,5]decane), which displays multiple phase transitions occurring at 273.8 K and 395.9 K separately. The Tr has significantly increased compared with the parent compounds reported previously. As the temperature sensitivity of compound is constant at different frequencies, it can be applied for detectors or sensors under frequency-independent or wide frequency conditions. Moreover, methylation design strategy evidently triggered the dual dielectric switch and improved the Tr, which opens a new path for finding and adjusting ideal materials of multiple phase transition.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.0c02558DOI Listing

Publication Analysis

Top Keywords

phase transition
12
phase transitions
12
multiple phase
12
methylation design
8
design strategy
8
dual dielectric
8
dielectric switch
8
transition temperature
8
materials multiple
8
phase
6

Similar Publications

Identification of a novel TOP2B::AFF2 fusion gene in B-cell acute lymphoblastic leukemia.

Sci Rep

January 2025

Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, No 136 Zhongshan 2 road, YuZhong district, Chongqing, 400014, China.

Genetic alterations play a pivotal role in leukemic clonal transformation, significantly influencing disease pathogenesis and clinical outcomes. Here, we report a novel fusion gene and investigate its pathogenic role in acute lymphoblastic leukemia (ALL). We engineer a transposon transfection system expressing the TOP2B::AFF2 transcript and introduce it into Ba/F3 cells.

View Article and Find Full Text PDF

Clear cell renal cell carcinoma is a prevalent urological malignancy, imposing substantial burdens on both patients and society. In our study, we used bioinformatics methods to select four putative target genes associated with EMT and prognosis and developed a nomogram model which could accurately predicting 5-year patient survival rates. We further analyzed proteome and single-cell data and selected PLCG2 and TMEM38A for the following experiments.

View Article and Find Full Text PDF

A vision model for automated frozen tuna processing.

Sci Rep

January 2025

School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China.

Accurate and rapid segmentation of key parts of frozen tuna, along with precise pose estimation, is crucial for automated processing. However, challenges such as size differences and indistinct features of tuna parts, as well as the complexity of determining fish poses in multi-fish scenarios, hinder this process. To address these issues, this paper introduces TunaVision, a vision model based on YOLOv8 designed for automated tuna processing.

View Article and Find Full Text PDF

This study employed large eddy simulation (LES) with the wall-adapting local eddy-viscosity (WALE) model to investigate transitional flow characteristics in an idealized model of a healthy thoracic aorta. The OpenFOAM solver pimpleFoam was used to simulate blood flow as an incompressible Newtonian fluid, with the aortic walls treated as rigid boundaries. Simulations were conducted for 30 cardiac cycles and ensemble averaging was employed to ensure statistically reliable results.

View Article and Find Full Text PDF

Phase transitions in the mantle control its internal dynamics and structure. The post-spinel transition marks the upper-lower mantle boundary, where ringwoodite dissociates into bridgmanite plus ferropericlase, and its Clapeyron slope regulates mantle flow across it. This interaction has previously been assumed to have no lateral spatial variations, based on the assumption of a linear post-spinel boundary in pressure and temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!