A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Hydrogen-Bonded Extracellular Matrix-Mimicking Bactericidal Hydrogel with Radical Scavenging and Hemostatic Function for pH-Responsive Wound Healing Acceleration. | LitMetric

Generation of reactive oxygen species, delayed blood clotting, prolonged inflammation, bacterial infection, and slow cell proliferation are the main challenges of effective wound repair. Herein, a multifunctional extracellular matrix-mimicking hydrogel is fabricated through abundant hydrogen bonding among the functional groups of gelatin and tannic acid (TA) as a green chemistry approach. The hydrogel shows adjustable physicochemical properties by altering the concentration of TA and it represents high safety features both in vitro and in vivo on fibroblasts, red blood cells, and mice organs. In addition to the merit of facile encapsulation of cell proliferation-inducing hydrophilic drugs, accelerated healing of skin injury is obtained through pH-dependent release of TA and its multifaceted mechanisms as an antibacterial, antioxidant, hemostatic, and anti-inflammatory moiety. The developed gelatin-TA (GelTA) hydrogel also shows an outstanding effect on the formation of extracellular matrix and wound closure in vivo via offered cell adhesion sites in the backbone of gelatin that provide increased re-epithelialization and better collagen deposition. These results suggest that the multifunctional GelTA hydrogel is a promising candidate for the clinical treatment of full-thickness wounds and further development of wound dressing materials that releases active agents in the neutral or slightly basic environment of infected nonhealing wounds.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202001122DOI Listing

Publication Analysis

Top Keywords

extracellular matrix-mimicking
8
gelta hydrogel
8
hydrogel
5
hydrogen-bonded extracellular
4
matrix-mimicking bactericidal
4
bactericidal hydrogel
4
hydrogel radical
4
radical scavenging
4
scavenging hemostatic
4
hemostatic function
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!