Background: During the 2009 pandemic of an emerging influenza A virus (IAV; H1N1pdm09), data from several European countries indicated that the spread of the virus might have been interrupted by the annual autumn rhinovirus epidemic. We aimed to investigate viral interference between rhinovirus and IAV with use of clinical data and an experimental model.
Methods: We did a clinical data analysis and experimental infection study to investigate the co-occurrence of rhinovirus and IAV in respiratory specimens from adults (≥21 years) tested with a multiplex PCR panel at Yale-New Haven Hospital (CT, USA) over three consecutive winter seasons (Nov 1 to March 1, 2016-17, 2017-18, and 2018-19). We compared observed versus expected co-detections using data extracted from the Epic Systems electronic medical record system. To assess how rhinovirus infection affects subsequent IAV infection, we inoculated differentiated primary human airway epithelial cultures with rhinovirus (HRV-01A; multiplicity of infection [MOI] 0·1) or did mock infection. On day 3 post-infection, we inoculated the same cultures with IAV (H1N1 green fluorescent protein [GFP] reporter virus or H1N1pdm09; MOI 0·1). We used reverse transcription quantitative PCR or microscopy to quantify host cell mRNAs for interferon-stimulated genes (ISGs) on day 3 after rhinovirus or mock infection and IAV RNA on days 4, 5, or 6 after rhinovirus or mock infection. We also did sequential infection studies in the presence of BX795 (6 μM), to inhibit the interferon response. We compared ISG expression and IAV RNA and expression of GFP by IAV reporter virus.
Findings: Between July 1, 2016, and June 30, 2019, examination of 8284 respiratory samples positive for either rhinovirus (n=3821) or IAV (n=4463) by any test method was used to establish Nov 1 to March 1 as the period of peak virus co-circulation. After filtering for samples within this time frame meeting the inclusion criteria (n=13 707), there were 989 (7·2%) rhinovirus and 922 (6·7%) IAV detections, with a significantly lower than expected odds of co-detection (odds ratio 0·16, 95% CI 0·09-0·28). Rhinovirus infection of cell cultures induced ISG expression and protected against IAV infection 3 days later, resulting in an approximate 50 000-fold decrease in IAV H1N1pdm09 viral RNA on day 5 post-rhinovirus inoculation. Blocking the interferon response restored IAV replication following rhinovirus infection.
Interpretation: These findings show that one respiratory virus can block infection with another through stimulation of antiviral defences in the airway mucosa, supporting the idea that interference from rhinovirus disrupted the 2009 IAV pandemic in Europe. These results indicate that viral interference can potentially affect the course of an epidemic, and this possibility should be considered when designing interventions for seasonal influenza epidemics and the ongoing COVID-19 pandemic.
Funding: National Institutes of Health, National Institute of General Medical Sciences, and the Yale Department of Laboratory Medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7580833 | PMC |
http://dx.doi.org/10.1016/s2666-5247(20)30114-2 | DOI Listing |
Front Vet Sci
January 2025
Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile.
Influenza A virus (IAV) continuously threatens animal and public health globally, with swine serving as a crucial reservoir for viral reassortment and evolution. In Chile, H1N2 and H3N2 subtypes were introduced in the swine population before the H1N1 2009 pandemic, and the H1N1 was introduced from the H1N1pdm09 by successive reverse zoonotic events. Here, we report two novel introductions of IAV H3N2 human-origin in Chilean swine during 2023.
View Article and Find Full Text PDFJ Trop Med
January 2025
Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
Silymarin is a polyphenolic flavonoid extracted from milk thistle. It has potent immunomodulatory effects and can inhibit the replication of influenza A virus (IAV). The present study aimed to determine the inflammatory and anti-inflammatory cytokine secretion patterns in mice before and after silibinin treatment.
View Article and Find Full Text PDFNanomedicine (Lond)
January 2025
Clinical Laboratory Science Section, Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang, Selangor, Malaysia.
Phytochemicals are typically natural bioactive compounds or metabolites produced by plants. Phytochemical-loaded nanocarrier systems, designed to overcome bioavailability limitations and enhance therapeutic effects, have garnered significant attention in recent years. The coronavirus disease 2019 (COVID-19) pandemic has intensified interest in the therapeutic application of phytochemicals to combat viral infections.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
Mitochondrial electron transport chain (ETC) function modulates macrophage biology; however, mechanisms underlying mitochondria ETC control of macrophage immune responses are not fully understood. Here, we report that mutant mice with mitochondria ETC complex III (CIII)-deficient macrophages exhibit increased susceptibility to influenza A virus (IAV) and LPS-induced endotoxic shock. Cultured bone marrow-derived macrophages (BMDMs) isolated from these mitochondria CIII-deficient mice released less IL-10 than controls following TLR3 or TLR4 stimulation.
View Article and Find Full Text PDFFront Microbiol
January 2025
CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.
Influenza A virus (IAV) is a significant public health concern, causing seasonal outbreaks and occasional pandemics. These outbreaks result from changes in the virus's surface proteins which include hemagglutinin and neuraminidase. Influenza A virus has a vast reservoir, including wild birds, pigs, horses, domestic and marine animals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!