DUSP6 functions as an important negative feedback component of the MAPK/ERK signaling pathway. Although DUSP6 expression is tightly regulated by ERK1/2 signaling, the molecular mechanism of this regulation remains partially understood. In this work, we show that the transcriptional repressor CIC functions downstream of the ERK1/2 signaling to negatively regulate DUSP6 expression. CIC directly represses DUSP6 transcription by binding to three -regulatory elements (CREs) in DUSP6 promoter. p90RSK, a downstream target of ERK1/2, phosphorylates CIC at S173 and S301 sites, which creates a 14-3-3 recognition motif, resulting in 14-3-3-mediated nuclear export of CIC and derepression of DUSP6. Finally, we demonstrate that the oncogenic CIC-DUX4 fusion protein acts as a transcriptional activator of DUSP6 and its nuclear/cytoplasmic distribution remains regulated by ERK1/2 signaling. These results complete an ERK1/2/p90RSK/CIC/DUSP6 negative feedback circuit and elucidate the molecular mechanism of how RTK/MAPK signaling harnesses the transcriptional repressor activity of CIC in mammalian cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7578760PMC
http://dx.doi.org/10.1016/j.isci.2020.101635DOI Listing

Publication Analysis

Top Keywords

negative feedback
12
erk1/2 signaling
12
dusp6 expression
8
regulated erk1/2
8
molecular mechanism
8
transcriptional repressor
8
dusp6
7
cic
6
signaling
5
cic mediator
4

Similar Publications

Combination of immunotherapy and photothermal therapy (PTT) provides a promising therapeutic performance for tumors. However, it still faces negative feedback from suppressive factors such as adenosine. Herein, we developed a new nanodrug that can combine adenosine blockade and ferroptosis to promote the photoimmunotherapy of triple negative breast cancer (TNBC).

View Article and Find Full Text PDF

Feedback loop centered on MAF1 reduces blood-brain barrier damage in sepsis-associated encephalopathy.

Cell Mol Biol Lett

January 2025

Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.

Background: A previous study found that MAF1 homolog, a negative regulator of RNA polymerase III (MAF1), protects the blood-brain barrier (BBB) in sepsis-associated encephalopathy (SAE); however, the related molecular mechanisms remain unclear.

Subjects And Methods: In this study, a rat sepsis model was constructed using the cecum ligation and puncture (CLP) method. In vitro, rat brain microvascular endothelial cells and astrocytes were stimulated with serum from the sepsis model rats.

View Article and Find Full Text PDF

A lack of tools for detecting receptor activity has limited our ability to fully explore receptor-level control of developmental patterning. Here, we extend a new class of biosensors for receptor tyrosine kinase (RTK) activity, the pYtag system, to visualize endogenous RTK activity in . We build biosensors for three RTKs that function across developmental stages and tissues.

View Article and Find Full Text PDF

Purpose: Trust behavior is of fundamental importance for social stability and development. Middle-aged people, owing to their abundant social resources and extensive experience, have a significant impact through their trust behavior. However, research on enhancing their trust behavior is relatively scarce.

View Article and Find Full Text PDF

Alexander's law states that spontaneous nystagmus increases when looking in the direction of fast-phase and decreases during gaze in slow-phase direction. Disobedience to Alexander's law is occasionally observed in central nystagmus, but the underlying neural circuit mechanisms are poorly understood. In a retrospective analysis of 2,652 patients with posterior circulations stroke, we found a violation of Alexander's law in one or both directions of lateral gaze in 17 patients with lesions of unilateral lateral medulla affecting the vestibular nucleus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!