Apart from many limitations, the usage of hydrogen in different day-to-day applications have been increasing drastically in recent years. However, numerous techniques available to produce hydrogen, electrolysis of water is one of the simplest and cost-effective hydrogen production techniques. In this method, water is split into hydrogen and oxygen by using external electric current. In this research, a novel hydrogen production system incorporated with Photovoltaic - Thermal (PVT) solar collector is developed. The influence of different parameters like solar collector tilt angle, thermal collector design and type of heat transfer fluid on the performance of PVT system and hydrogen production system are also discussed. Finally, thermal efficiency, electrical efficiency, and hydrogen production rate have been predicted by using the Adaptive Neuro-Fuzzy Inference System (ANFIS) technique. Based on this study results, it can be inferred that the solar collector tilt angle plays a significant role to improve the performance of the electrical and thermal performance of PVT solar system and Hydrogen yield rate. On the other side, the spiral-shaped thermal collector with water exhibited better end result than the other hydrogen production systems. The predicted results ANFIS techniques represent an excellent agreement with the experimental results. In consequence, it is suggested that the developed ANFIS model can be adopted for further studies to predict the performance of the hydrogen production system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7569347 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2020.e05271 | DOI Listing |
ACS Nano
January 2025
Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
Unlike homogeneous metal complexes, achieving absolute control over reaction selectivity in heterogeneous catalysts remains a formidable challenge due to the unguided molecular adsorption/desorption on metal-surface sites. Conventional organic surface modifiers or ligands and rigid inorganic and metal-organic porous shells are not fully effective. Here, we introduce the concept of "ligand-porous shell cooperativity" to desirably reaction selectivity in heterogeneous catalysis.
View Article and Find Full Text PDFChemphyschem
January 2025
School of Energy and Power, New Energy, 02 Mengxi Street, 212003, Zhenjiang, CHINA.
Since hydrogen is a promising alternative to fossil fuels due to its high energy density and environmental friendliness, water electrolysis for hydrogen production has received widespread attentions wherein the development of active and stable catalytic materials is a key research direction. This article designs a dual transition metal doped functional graphene for hydrogen evolution reaction via density functional theory calculations. Among varied combinations, 16 candidates are screened out that are expected to be stable as reflected by the criterion of formation energy Ef < 0 and active due to its free energy of hydrogen adsorption ∆GH within the window of ±0.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Donghua University, No.2999, North Renmin Road, Songjiang District, Shanghai, CHINA.
Herein, we demonstrate a two-in-one strategy for efficient neutral electrosynthesis of H2O2 via two-electron oxygen reduction reaction (2e-ORR), achieved by synergistically fine-modulating both the local microenvironment and electronic structure of indium (In) single atom (SA) sites. Through a series of finite elemental simulations and experimental analysis, we highlight the significant impact of phosphorous (P) doping on an optimized 2D mesoporous carbon carrier, which fosters a favorable microenvironment by improving the mass transfer and O2 enrichment, subsequently leading to an increased local pH levels. Consequently, an outstanding 2e-ORR performance is observed in neutral electrolytes, achieving over 95% selectivity for H2O2 across a broad voltage range of 0.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Aramco Americas, Boston Research Center, Cambridge, MA, 02139, USA.
Membrane-based gas separation provides an energy-efficient approach for the simultaneous CO and HS removal from sour natural gas. The fluorinated polyimide (PI) membranes exhibited a promising balance between permeability and permselectivity for sour natural gas separation. To further improve the separation efficiency of fluorinated PI membranes, a melamine-copolymerization synthetic approach is devised that aims to incorporate melamine motifs with high sour gas affinity into the structure of the PI membranes.
View Article and Find Full Text PDFACS Electrochem
January 2025
Stephenson Institute for Renewable Energy (SIRE) and the Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, United Kingdom.
Carbon dioxide electroreduction does not occur on Au when metal cations are absent from the electrode surfaces. Here we show that the electroreduction can be enabled without metal cations, albeit with low efficiency, by the presence of cationic surfactants on Au. The findings demonstrate that in addition to possibly stabilizing CO reduction intermediates the presence of surfactants plays a role in suppressing the competing reactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!