Cellulose is the most abundant source of biomass, which can be converted into monosaccharide or other chemical platform molecules for the sustainable production of chemicals and fuels. Acid catalysts can promote hydrolytic degradation of cellulose into valuable platform molecules, which is of great significance in the development of chemicals and biofuels. However, there are still some shortcomings and limitations of the catalysts for the hydrolytic degradation of cellulosic biomass. Heteropoly acid (HPA), as a green catalyst, seems to be more conducive to the degradation of cellulosic biomass due to its extreme acidity. HPAs can be designed in homogeneous and heterogeneous systems. Moreover, they can be easily separated from the products in both systems by a simple extraction process. According to the unique properties of HPAs (e.g., good solubility, high thermal stability, and strong acidity), using heteropoly acid-based catalysts to depolymerize and convert cellulose into value-added chemicals and biofuels has become one of the most remarkable processes in chemistry for sustainability. In this review, the characteristics, advantages, and applications of HPAs in different categories for cellulose degradation, especially hydrolysis hydrolytic degradation, are summarized. Moreover, the mechanisms of HPAs catalysts in the effective degradation of cellulosic biomass are discussed. This review provides more avenues for the development of renewed and robust HPAs for cellulose degradation in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545158 | PMC |
http://dx.doi.org/10.3389/fchem.2020.580146 | DOI Listing |
Chem Commun (Camb)
January 2025
College of Environment Science, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
We report a facile fractionation strategy using choline hydroxide (ChOH) based alkaline deep eutectic solvents (DES) for whole-component upgrading of bagasse. Through selective lignin and xylan dissolution, along with extensive biomass swelling, high-value lignin-carbohydrate complexes (LCC, with high β-O-4 bond content of 68.9/100 Ar) and high-purity xylan were extracted without compromising cellulose recovery and hydrolysis.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037 China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037 China. Electronic address:
Poly(N-isopropylacrylamide) (PNIPAM) composite hydrogels have recently emerged as promising candidates for soft hydrogel actuators. However, developing a facile and fast method to obtain multifunctional PNIPAM hydrogel actuators with simulating biological versatility remains a major challenge. Herein, we developed a fast-redox initiation system to prepare PNIPAM/sodium carboxymethyl cellulose (CMC)/TCT MXene nanocomposite hydrogel with multidirectional actuating behaviors and improved mechanical properties.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Center of Engineering, Federal University of Pelotas, Pelotas 96010-610, Brazil.
This study investigates the sustainable use of spp. bark through different chemical (hydrothermal, acid, alkaline, and bleaching) and physical (milling) pretreatments in the production of sustainable films. Valorization of agro-industrial residues and the demand for sustainable materials pose challenges for environmentally responsible solutions.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China.
Paper-based packaging materials have gained attention from academia and industry for their outstanding environmental sustainability advantages. However, they still encounter major challenges, such as low mechanical strength and inadequate functionality, hindering the replacement of unsustainable packaging materials. Inspired by the remarkable strength of trees provided by cellulose fibers and the water and heat protection of trees provided by bark, this study developed a new biomass-based packaging material (SNC-C) that combines strength, thermal insulation, and water resistance.
View Article and Find Full Text PDFPlanta
January 2025
Advanced Laboratory for Plant Genetic Engineering, Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, India.
This study seeks to improve the biomass extractability of Sorghum bicolor by targeting a critical enzyme, 4CL, through metabolic engineering of the lignin biosynthetic pathway at the post-transcriptional level. Sorghum bicolor L., a significant forage crop, offers a potential source of carbohydrate components for biofuel production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!