Chronic low-grade inflammation orchestrated by macrophages plays a critical role in metabolic chronic diseases, like obesity and atherosclerosis. However, the underlying mechanism remains to be elucidated. Here, the E3 ubiquitin ligase F-box/WD Repeat-Containing Protein 2 (FBXW2), the substrate-binding subunit of E3 ubiquitin ligase SCF (a complex of FBXW2, SKP1, and cullin-1), as an inflammatory mediator in macrophages, is identified. Myeloid-specific FBXW2 gene deficiency improves both obesity-associated with insulin resistance and atherosclerosis in murine models. The beneficial effects by FBXW2 knockout are accompanied by decreased proinflammatory responses and macrophage infiltration in the microenvironment. Mechanistically, it is identified that KH-type splicing regulatory protein (KSRP) is a new bona fide ubiquitin substrate of SCF. Inhibition of KSRP prevents FBXW2-deficient macrophages from exerting a protective effect on inflammatory reactions, insulin resistance and plaque formation. Furthermore, it is demonstrated that the C-terminus (P3) of FBXW2 competitively ablates the function of FBXW2 in KSRP degradation and serves as an effective inhibitor of obesity and atherogenesis progression. Thus, the data strongly suggest that SCF is an important mediator in the context of metabolic diseases. The development of FBXW2 (P3)-mimicking inhibitors and small-molecular drugs specifically abrogating KSRP ubiquitination-dependent inflammatory responses are viable approaches for obesity and atherosclerosis treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7578860 | PMC |
http://dx.doi.org/10.1002/advs.202001800 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!