Symbiont-Mediated Insecticide Detoxification as an Emerging Problem in Insect Pests.

Front Microbiol

Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, United States.

Published: September 2020

Pesticide use is prevalent with applications from the backyard gardener to large-scale agriculture and combatting pests in homes and industrial settings. Alongside the need to control unwanted pests comes the selective pressure generated by sustained pesticide use has become a concern leading to environmental contamination, pest resistance, and, thus, reduced pesticide efficacy. Despite efforts to improve the environmental impact and reduce off-target effects, chemical pesticides are relied on and control failures are costly. Though pesticide resistance mechanisms vary, one pattern that has recently emerged is symbiont-mediated detoxification within insect pests. The localization within the insect host, the identity of the symbiotic partner, and the stability of the associations across different systems vary. The diversity of insects and ecological settings linked to this phenomenon are broad. In this mini-review, we summarize the recent trend of insecticide detoxification modulated by symbiotic associations between bacteria and insects, as well as highlight the implications for pesticide development, pest management strategies, and pesticide bioremediation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7554331PMC
http://dx.doi.org/10.3389/fmicb.2020.547108DOI Listing

Publication Analysis

Top Keywords

insecticide detoxification
8
insect pests
8
pesticide
6
symbiont-mediated insecticide
4
detoxification emerging
4
emerging problem
4
problem insect
4
pests
4
pests pesticide
4
pesticide prevalent
4

Similar Publications

Predaceous and Phytophagous Pentatomidae Insects Exhibit Contrasting Susceptibilities to Imidacloprid.

Int J Mol Sci

January 2025

Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

Imidacloprid, a widely used neonicotinoid insecticide, targets insect pests but also affects natural enemies. However, the effects of neonicotinoid insecticides on closely related insects remain unclear. We evaluated the harmful effects of imidacloprid on the phytophagous and predaceous .

View Article and Find Full Text PDF

Pymetrozine is currently one of the primary insecticides used to control the brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae), but the long-term effectiveness of this chemical is threatened by growing issues of resistance. Previous studies in a laboratory selected strain of N. lugens, Pym-R, have shown that resistance to pymetrozine can evolve without target-site mutations.

View Article and Find Full Text PDF

Background: The resurgence of Anopheles funestus, a dominant vector of human malaria in western Kenya was partly attributed to insecticide resistance. However, evidence on the molecular basis of pyrethroid resistance in western Kenya is limited. Here, we reported metabolic resistance mechanisms and demonstrated that multiple non-coding Ribonucleic Acids (ncRNAs) could play a potential role in An.

View Article and Find Full Text PDF

Differentially spliced mitochondrial CYP419A1 contributes to ethiprole resistance in Nilaparvata lugens.

Insect Biochem Mol Biol

January 2025

College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK. Electronic address:

The brown planthopper Nilaparvata lugens is one of the most economically important pests of cultivated rice in Southeast Asia. Extensive use of insecticide treatments, such as imidacloprid, fipronil and ethiprole, has resulted in the emergence of multiple resistant strains of N. lugens.

View Article and Find Full Text PDF

Insecticide resistant Anopheles from Ethiopia but not Burkina Faso show a microbiota composition shift upon insecticide exposure.

Parasit Vectors

January 2025

University Hospital Heidelberg, Medical Faculty, Centre for Infectious Diseases, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.

Background: Malaria remains a key contributor to mortality and morbidity across Africa, with the highest burden in children under 5. Insecticide-based vector control tools, which target the adult Anopheles mosquitoes, are the most efficacious tool in disease prevention. Due to the widespread use of these interventions, insecticide resistance to the most used classes of insecticides is now pervasive across Africa.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!