What is the relation between episodic memory and episodic (or experiential) imagination? According to the causal theory of memory, memory differs from imagination because remembering entails the existence of a continuous causal connection between one's original experience of an event and one's subsequent memory, a connection that is maintained by a memory trace. The simulation theory rejects this conception of memory, arguing against the necessity of a memory trace for successful remembering. I show that the simulation theory faces two serious problems, which are better explained by appealing to a causal connection maintained by a memory trace. Remembering the personal past is not the same as imagining.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7554568 | PMC |
http://dx.doi.org/10.3389/fpsyg.2020.585352 | DOI Listing |
Immunity
January 2025
Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia. Electronic address:
The unexplained association between infection and autoimmune disease is strongest for hepatitis C virus-induced cryoglobulinemic vasculitis (HCV-cryovas). To analyze its origins, we traced the evolution of pathogenic rheumatoid factor (RF) autoantibodies in four HCV-cryovas patients by deep single-cell multi-omic analysis, revealing three sources of B cell somatic mutation converged to drive the accumulation of a large disease-causing clone. A method for quantifying low-affinity binding revealed recurring antibody variable domain combinations created by V(D)J recombination that bound self-immunoglobulin G (IgG) but not viral E2 antigen.
View Article and Find Full Text PDFWe study resonance redistribution mechanisms inside a hot vapor cell. This is achieved by pumping cesium atoms on the 6S→6P resonance and subsequently probing the velocity distribution of the 6P population by a linear absorption experiment on the 6P→16S or 6P→15D transitions at 514 nm and 512 nm, respectively. We demonstrate that despite the existence of thermalization processes, traces of the initial velocity selection, imposed by the pump, survive in hyperfine levels of the intermediate (6P) state.
View Article and Find Full Text PDFCommun Biol
January 2025
Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, China.
The retrosplenial cortex (RSP) is a complex brain region with multiple interconnected subregions that plays crucial roles in various cognitive functions, including memory, spatial navigation, and emotion. Understanding the afferent and efferent connectivity of the RSP is essential for comprehending the underlying mechanisms of its functions. Here, via viral tracing and fluorescence micro-optical sectioning tomography (fMOST), we systematically investigated the anatomical organisation of the upstream and downstream circuits of glutamatergic and GABAergic neurons in the dorsal and ventral RSP.
View Article and Find Full Text PDFBiol Trace Elem Res
January 2025
Laboratory Functional Physiology and Bio-Resources Valorisation, Higher Institute of Biotechnology of Beja, University of Jendouba, Avenue Habib Bourguiba BP 382, 9000, Beja, Tunisia.
Iron overload has been shown to have deleterious effects in the brain through the formation of reactive oxygen species, which ultimately may contribute to neurodegenerative disorders. Accordingly, rodent studies have indicated that systemic administration of iron produces excess iron in the brain and results in behavioral and cognitive deficits. To what extent cognitive abilities are affected and which neurobiological mechanisms underlie those deficits remain to be more fully characterized.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Single Molecule Analysis Group, Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109, United States.
Single-molecule fluorescence resonance energy transfer (smFRET) has emerged as a pivotal technique for probing biomolecular dynamics over time at nanometer scales. Quantitative analyses of smFRET time traces remain challenging due to confounding factors such as low signal-to-noise ratios, photophysical effects such as bleaching and blinking, and the complexity of modeling the underlying biomolecular states and kinetics. The dynamic distance information shaping the smFRET trace powerfully uncovers even transient conformational changes in single biomolecules both at or far from equilibrium, relying on trace idealization to identify specific interconverting states.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!