Hygroscopic growth models are currently of interest as aids for targeting the deposition of inhaled drug particles in preferred areas of the lung that will maximize their pharmaceutical effect. Mathematical models derived to estimate hygroscopic growth over time have been previously developed but have not been thoroughly validated. For this study, model validation involved a comparison of modeled values to measured values when the growing droplet had reached equilibrium. A second validation process utilized a novel system to measure the growth of a droplet on a microscope coverslip relative to modeled values when the droplet is undergoing the initial rapid growth phase. Various methods currently used to estimate the water activity of the growing droplet, which influences the droplet growth rate, were also compared. Results indicated that a form of the hygroscopic growth model that utilizes coupled-differential equations to estimate droplet diameter and temperature over time was valid throughout droplet growth until it reached its equilibrium size. Accuracy was enhanced with the use of a polynomial expression to estimate water activity relative to the use of a simplified estimate of water activity based on Raoult's Law. Model accuracy was also improved when constraining the film of salt solution surrounding the dissolving salt core at saturation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7577510PMC
http://dx.doi.org/10.1080/02786826.2020.1763247DOI Listing

Publication Analysis

Top Keywords

hygroscopic growth
16
water activity
16
estimate water
12
growth
8
growth model
8
modeled values
8
growing droplet
8
reached equilibrium
8
droplet growth
8
droplet
7

Similar Publications

Effective modifications for the buried interface between self-assembled monolayers (SAMs) and perovskites are vital for the development of efficient, stable inverted perovskite solar cells (PSCs) and their tandem photovoltaics. Herein, an ionic-liquid-SAM hybrid strategy is developed to synergistically optimize the uniformity of SAMs and the crystallization of perovskites above. Specifically, an ionic liquid of 1-butyl-3-methyl-1H-imidazol-3-iumbis((trifluoromethyl)sulfonyl)amide (BMIMTFSI) is incorporated into the SAM solution, enabling reduced surface roughness, improved wettability, and a more evenly distributed surface potential of the SAM film.

View Article and Find Full Text PDF

Dental implant coronal surfaces designed with the primary goal of maintaining crestal bone levels may also promote bacterial adhesion, leading to soft tissue inflammation and peri-implant bone loss. Achieving an optimal surface roughness that minimizes bacterial adhesion while preserving crestal bone is crucial. It is hypothesized that a specific threshold surface roughness value may exist below which, and above which, initial bacterial adhesion does not statistically change.

View Article and Find Full Text PDF

Ventilation and features of the lung environment dynamically alter modeled intrapulmonary aerosol exposure from inhaled electronic cigarettes.

Sci Rep

December 2024

Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1690, USA.

Electronic cigarettes (e-cigs) fundamentally differ from tobacco cigarettes in their generation of liquid-based aerosols. Investigating how e-cig aerosols behave when inhaled into the dynamic environment of the lung is important for understanding vaping-related exposure and toxicity. A ventilated artificial lung model was developed to replicate the ventilatory and environmental features of the human lung and study their impact on the characteristics of inhaled e-cig aerosols from simulated vaping scenarios.

View Article and Find Full Text PDF

Nonthermal plasma has been extensively utilized in various biomedical fields, including surface engineering of medical implants to enhance their biocompatibility and osseointegration. To ensure robustness and cost effectiveness for commercial viability, stable and effective plasma is required, which can be achieved by reducing gas pressure in a controlled volume. Here, we explored the impact of reduced gas pressure on plasma properties, surface characteristics of plasma-treated implants, and subsequent biological outcomes.

View Article and Find Full Text PDF

The current study investigates and compares the biological effects of ultrathin conformal coatings of zirconium dioxide (ZrO) and vanadium pentoxide (VO) on osteoblastic MG-63 cells grown on TiO nanotube layers (TNTs). Coatings were achieved by the atomic layer deposition (ALD) technique. TNTs with average tube diameters of 15, 30, and 100 nm were fabricated on Ti substrates (via electrochemical anodization) and were used as primary substrates for the study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!