A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Inferring Brain Signals Synchronicity from a Sample of EEG Readings. | LitMetric

AI Article Synopsis

  • Inferring synchronized brain activity from EEG readings across different individuals is complex due to methodological challenges, despite the potential benefits of pooling data.
  • The authors address scientific issues related to synchronized neuronal activity and present a new statistical framework for analyzing EEG data.
  • Their approach builds on established techniques in time-series analysis and combines machine learning with Bayesian methods to improve computational efficiency in drawing conclusions from EEG samples.

Article Abstract

Inferring patterns of synchronous brain activity from a heterogeneous sample of electroencephalograms (EEG) is scientifically and methodologically challenging. While it is intuitively and statistically appealing to rely on readings from more than one individual in order to highlight recurrent patterns of brain activation, pooling information across subjects presents non-trivial methodological problems. We discuss some of the scientific issues associated with the understanding of synchronized neuronal activity and propose a methodological framework for statistical inference from a sample of EEG readings. Our work builds on classical contributions in time-series, clustering and functional data analysis, in an effort to reframe a challenging inferential problem in the context of familiar analytical techniques. Some attention is paid to computational issues, with a proposal based on the combination of machine learning and Bayesian techniques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7580714PMC
http://dx.doi.org/10.1080/01621459.2018.1518233DOI Listing

Publication Analysis

Top Keywords

sample eeg
8
eeg readings
8
inferring brain
4
brain signals
4
signals synchronicity
4
synchronicity sample
4
readings inferring
4
inferring patterns
4
patterns synchronous
4
synchronous brain
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: