Disorders of sex development (DSD) are different types of conditions that their accurate diagnosis by using conventional phenotypic and biochemical approaches is a challenging issue. Precise determination of DSD is critical due to the detection of possible life-threatening associated disorders. It may also assist parents in choosing the most suitable management for their affected child. In this study, two affected kids born from consanguineous families who were clinically diagnosed for sex development disorder were investigated for the main cause of the disease. Biochemical analysis failed to make an accurate diagnosis. Karyotype analysis showed an abnormal sex chromosome pattern. Whole exome sequencing was sequentially applied to precisely ascertain the genetic cause of the disease. A novel deletion, g.40936_53878del12943insTG (NG_008365.1), and one known mutation, c.586G>A (p.Gly196Ser), were detected in SRD5A2 gene in case I and case II respectively. Further analysis was performed using polymerase chain reaction, primer walking and Sanger sequencing to detect the nucleotides changes accurately. Segregation analysis in the families confirmed 13kb novel homozygous deletion of SRD5A2 in case I and c.586G>A in case II. The present study confirms the diagnostic value of whole exome sequencing in the detection of DSD aetiology, especially when several differential diagnoses are possible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/and.13847 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!