DNA adenine methyltransferase identification (DamID) measures a protein's DNA-binding history by methylating adenine bases near each protein-DNA interaction site and then selectively amplifying and sequencing these methylated regions. Additionally, these interactions can be visualized using A-Tracer, a fluorescent protein that binds to methyladenines. Here, we combine these imaging and sequencing technologies in an integrated microfluidic platform (μDamID) that enables single-cell isolation, imaging, and sorting, followed by DamID. We use μDamID and an improved A-Tracer protein to generate paired imaging and sequencing data from individual human cells. We validate interactions between Lamin-B1 protein and lamina-associated domains (LADs), observe variable 3D chromatin organization and broad gene regulation patterns, and jointly measure single-cell heterogeneity in Dam expression and background methylation. μDamID provides the unique ability to compare paired imaging and sequencing data for each cell and between cells, enabling the joint analysis of the nuclear localization, sequence identity, and variability of protein-DNA interactions. A record of this paper's transparent peer review process is included in the Supplemental Information.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7588622 | PMC |
http://dx.doi.org/10.1016/j.cels.2020.08.015 | DOI Listing |
Abdom Radiol (NY)
January 2025
Department of Radiology, Taizhou Municipal Hospital, Taizhou, Zhejiang, China.
Background: To develop and validate a clinical-radiomics model for preoperative prediction of lymphovascular invasion (LVI) in rectal cancer.
Methods: This retrospective study included data from 239 patients with pathologically confirmed rectal adenocarcinoma from two centers, all of whom underwent MRI examinations. Cases from the first center (n = 189) were randomly divided into a training set and an internal validation set at a 7:3 ratio, while cases from the second center (n = 50) constituted the external validation set.
Orphanet J Rare Dis
January 2025
Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310053, Zhejiang, China.
Purpose: To enhance the detection rate of Neonatal Intrahepatic Cholestasis caused by Citrin Deficiency (NICCD) through newborn screening (NBS), we analyzed the metabolic profiles of missed patients and proposed a more reliable method for early diagnosis.
Methods: In this retrospective study, NICCD patients were classified into "Newborn Screening" (64 individuals) and "Missed Screening" (52 individuals) groups. Metabolic profiles were analyzed using the non-derivatized MS/MS Kit, and genetic mutations were identified via next-generation sequencing and confirmed by Sanger sequencing.
J Clin Pathol
January 2025
Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
Aims: Calcified chondroid mesenchymal neoplasm (CCMN) is a recently identified category of soft tissue neoplasms defined by cartilage or cartilaginous matrix formation and gene fusions. Its rarity and similarities to other soft tissue tumours pose diagnostic challenges. This study aims to deepen understanding of CCMN, highlighting molecular pathology's role in diagnosis to reduce misdiagnosis, overdiagnosis and overtreatment.
View Article and Find Full Text PDFComput Biol Med
January 2025
State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China. Electronic address:
Transmission imaging may become a possible advance for breast cancer screening with non-invasive, cost-effective, and radiation-free approaches for early detection. Frame accumulation can successfully eliminate the issue of low SNR, low grayscale and poor quality in transmission image. However, frame accumulation accuracy can be diminished because of inherent human body instability during image acquisition and the light absorption characteristics of breast tissue, resulting in distorted and misplaced image sequences.
View Article and Find Full Text PDFSci Total Environ
January 2025
Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands; IBED, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, the Netherlands.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!