A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Separation and recovery of ammonium from industrial wastewater containing methanol using copper hexacyanoferrate (CuHCF) electrodes. | LitMetric

Separation and recovery of ammonium from industrial wastewater containing methanol using copper hexacyanoferrate (CuHCF) electrodes.

Water Res

Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium; CAPTURE, Coupure Links 653, Ghent 9000, Belgium. Electronic address:

Published: January 2021

Ammonium is typically removed from wastewater by converting it to nitrogen gas using microorganisms, precluding its recovery. Copper hexacyanoferrate (CuHCF) is known to reversibly intercalate alkali cations in aqueous electrolytes due to the Prussian Blue crystal structure. We used this property to create a carbon-based intercalation electrode within an electrochemical cell. Depending on the electrode potential, it can recover NH from wastewater via insertion/regeneration while leaving organics. In the first phase, different binders were evaluated towards creating a stable electrode matrix, with sodium carboxymethyl cellulose giving the best performance. Subsequently, based on voltammetry, we determined an intercalation potential for NH removal of + 0.3 V vs. Ag/AgCl, while the regeneration potential of the electrode was + 1.1 V (vs. Ag/AgCl). Using the CuHCF electrodes 95% of the NH in a synthetic wastewater containing 56 mM NH and 68 mM methanol was removed with an energy input of 0.34 ± 0.01 Wh g NH. A similar removal of 93% was obtained using an actual industrial wastewater (56 mM NH, 68 mM methanol, 0.02 mM NO, 0.05 mM NO, 0.04 mM SO and 0.34 mM ethanol), with an energy input of 0.40 ± 0.01 Wh g NH. In both cases, there was negligible removal of organics. The stability of CuHCF electrodes was evaluated either by open circuit potential monitoring (61 h) or by cyclic voltammetry (50 h, 116 cycles). The stability during cycling of the electrode was determined in both synthetic and real streams for 25 h (125 cycles). The charge density (C cm) of the CuHCF electrodes declined by 17 % and 19% after 125 cycles in the synthetic stream and the actual wastewater, respectively. This study highlights the possibility of low-cost CuHCF coated electrodes for achieving separation of NH from streams containing methanol. The stability of electrodes has been improved but needs to be further enhanced for large-scale applications and long-term operation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2020.116532DOI Listing

Publication Analysis

Top Keywords

cuhcf electrodes
16
wastewater methanol
12
industrial wastewater
8
copper hexacyanoferrate
8
hexacyanoferrate cuhcf
8
energy input
8
125 cycles
8
wastewater
6
cuhcf
6
electrodes
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!