COVID-19 caused by SARS-CoV-2 have become a global pandemic with serious rate of fatalities. SARS-CoV and MERS-CoV have also caused serious outbreak previously but the intensity was much lower than the ongoing SARS-CoV-2. The main infectivity factor of all the three viruses is the spike glycoprotein. In this study we have examined the intrinsic dynamics of the prefusion, lying state of trimeric S protein of these viruses through Normal Mode Analysis using Anisotropic Network Model. The dynamic modes of the S proteins of the aforementioned viruses were compared by root mean square inner product (RMSIP), spectral overlap and cosine correlation matrix. S proteins show homogenous correlated or anticorrelated motions among their domains but direction of C atom among the spike proteins show less similarity. SARS-CoV-2 spike shows high vertically upward motion of the receptor binding motif implying its propensity for binding with the receptor even in the lying state. MERS-CoV spike shows unique dynamical motion compared to the other two S protein indicated by low RMSIP, spectral overlap and cosine correlation value. This study will guide in developing common potential inhibitor molecules against closed state of spike protein of these viruses to prevent conformational switching from lying to standing state.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7567490 | PMC |
http://dx.doi.org/10.1016/j.jmgm.2020.107778 | DOI Listing |
Nanoscale
January 2025
State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P.R. China.
Chirality, a pervasive phenomenon in nature, is widely studied across diverse fields including the origins of life, chemical catalysis, drug discovery, and physical optoelectronics. The investigations of natural chiral materials have been constrained by their intrinsically weak chiral effects. Recently, significant progress has been made in the fabrication and assembly of low-dimensional micro and nanoscale chiral materials and their architectures, leading to the discovery of novel optoelectronic phenomena such as circularly polarized light emission, spin and charge flip, advocating great potential for applications in quantum information, quantum computing, and biosensing.
View Article and Find Full Text PDFJ Biol Chem
January 2025
CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. Electronic address:
Biomolecular condensates (BMCs) represent a group of organized and programmed systems that participate in gene transcription, chromosome organization, cell division, tumorigenesis, and aging. However, the understanding of BMCs in terms of internal organizations and external regulations remains at an early stage. Recently, novel approaches such as synthetic biology have been used for de novo synthesis of BMCs.
View Article and Find Full Text PDFNeuron
January 2025
Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA. Electronic address:
Neurexin cell-adhesion molecules regulate synapse development and function by recruiting synaptic components. Here, we uncover a mechanism for presynaptic assembly that precedes neurexin recruitment, mediated by interactions between cytosolic proteins and membrane phospholipids. Developmental imaging in C.
View Article and Find Full Text PDFSci Adv
January 2025
Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
Placebo analgesia is caused by inactive treatment, implicating endogenous brain function involvement. However, the neurobiological basis remains unclear. In this study, we found that μ-opioid signals in the medial prefrontal cortex (mPFC) activate the descending pain inhibitory system to initiate placebo analgesia in neuropathic pain rats.
View Article and Find Full Text PDFCurr Hypertens Rep
January 2025
Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
Purpose Of Review: The role of the lymphatic system in clearing extravasated fluids, lipid transport, and immune surveillance is well established, and lymphatic vasculature can provide a vital role in facilitating crosstalk among various organ systems. Lymphatic vessels rely on intrinsic and local factors to absorb and propel lymph from the interstitium back to the systemic circulation. The biological implications of local influences on lymphatic vessels are underscored by the exquisite sensitivity of these vessels to environmental stimuli.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!