Lignocellulose is an abundant substrate for biogas production; however, for efficient utilization, proper pre-treatment is required to enhance the biomethane yield and hydrolysis rate significantly. Phenolic compounds from dissolved lignin, produced during alkali pre-treatment, have inhibitory effects on the anaerobic digestion; however, the possible inhibitory effects of solid lignin have not gathered enough interest. Especially, the effect of solid lignin on methanogenesis remains a knowledge gap. In this study, kraft lignin was used as a model solid lignin substrate for its co-digestion with microcrystalline cellulose. A new approach of modelling biomethane production curves using smoothing splines was developed to describe the long-term inhibitory effects of solid lignin on hydrolysis and methanogenesis. The method gives possibility to describe long-term inhibitory effects by using batch instead of continuous test data. Results revealed that kraft lignin showed mild inhibitory effects on methanogens. However lignin impact combined with volatile fatty accumulation can prolong hydrolysis and reactor recovery start-up by 47.3% and 75.3%, respectively. For small dosages of solid lignin adaptation of methanogens is possible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2020.124262 | DOI Listing |
World J Microbiol Biotechnol
January 2025
Graduate Program in Bioscience Technologies, Universidade Tecnológica Federal do Paraná, Toledo, Paraná, Brazil.
Efficient degradation of lignocellulosic biomass is key for the production of value-added products, contributing to sustainable and renewable solutions. This study employs a two-step approach to evaluate lignocellulolytic enzymes of Ceratocystis paradoxa, Colletotrichum falcatum, and Sporisorium scitamineum. First, an in silico genomic analysis was conducted to predict the potential enzyme groups produced by these fungi.
View Article and Find Full Text PDFFoods
January 2025
State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
Lignification often occurs during low-temperature storage in loquat fruit, leading to increased firmness and lignin content, water loss, and changes in flavor. As induced stress factors, short-time high-oxygen pre-treatment (SHOP) can initiate resistant metabolism and regulate the physicochemical qualities during fresh fruit storage. However, the effect of SHOP on the lignification and quality of loquat has been reported less.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Fruit Tree Center, Tropical Crops Genetic Resources Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
With the aim of enhancing plants' ability to respond to pathogenic fungi, this study focuses on disease resistance genes. We commenced a series of investigations by capitalizing on the pronounced differences in resistance to Fusarium wilt between resistant and susceptible varieties. Through an in-depth exploration of the metabolic pathways that bolster this defense, we identified genes associated with resistance to f.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Guangdong University of Technology, Guangzhou 510006, China.
Effective fractionation of lignocellulose into hemicellulose, cellulose, and lignin is the precondition for full-component valorization. Generally, harsh reaction conditions are used to improve fractionation efficiency, which leads to severe lignin condensation and inhibits its value-added applications. To address this issue, a novel biphasic system consisting of molten salt hydrates (MSHs) and n-butanol was developed for birch fractionation.
View Article and Find Full Text PDFFront Microbiol
January 2025
Enzyme Technology Laboratory, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand.
Maximizing saccharification efficiency of lignocellulose and minimizing the production costs associated with enzyme requirements are crucial for sustainable biofuel production. This study presents a novel semi-fed-batch saccharification method that uses a co-culture of and strain A9 to efficiently break down high solid-loading lignocellulosic biomass without the need for any external enzymes. This method optimizes saccharification efficiency and enhances glucose production from alkaline-treated rice straw, a representative lignocellulosic biomass.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!