Phosphorylation of STAT3 by axonal Cdk5 promotes axonal regeneration by modulating mitochondrial activity.

Exp Neurol

Neurophysiology Laboratory, Department of Oriental Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak-ro 62, Daejeon 34520, South Korea. Electronic address:

Published: January 2021

Cyclin-dependent kinase 5 (Cdk5) is involved in neural organization and synaptic functions in developing and adult brains, yet its role in axonal regeneration is not known well. Here, we characterize Cdk5 function for axonal regeneration after peripheral nerve injury. Levels of Cdk5 and p25 were elevated in sciatic nerve axons after injury. Cdk5 activity was concomitantly induced from injured nerve and increased the phosphorylation of signal transducer and activator of transcription 3 (STAT3) on the serine 727 residue. Pharmacological and genetic blockades of Cdk5 activity phosphorylating STAT3 resulted in the inhibition of axonal regeneration as evidenced by reduction of retrograde labeling of dorsal root ganglion (DRG) sensory neurons and spinal motor neurons and also of neurite outgrowth of preconditioned DRG neurons in culture. Cdk5 and STAT3 were found in mitochondrial membranes of the injured sciatic nerve. Cdk5-GFP, which was translocated into the mitochondria by the mitochondrial target sequence (MTS), induced STAT3 phosphorylation in transfected DRG neurons and was sufficient to induce neurite outgrowth. In the mitochondria, Cdk5 activity was positively correlated with increased mitochondrial membrane potential as measured by fluorescence intensity of JC-1 aggregates. Our data suggest that Cdk5 may play a role in modulating mitochondrial activity through STAT3 phosphorylation, thereby promoting axonal regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2020.113511DOI Listing

Publication Analysis

Top Keywords

axonal regeneration
20
cdk5 activity
12
cdk5
9
modulating mitochondrial
8
mitochondrial activity
8
sciatic nerve
8
neurite outgrowth
8
drg neurons
8
stat3 phosphorylation
8
axonal
6

Similar Publications

Action potentials (spikes) are regenerated at each node of Ranvier during saltatory transmission along a myelinated axon. The high density of voltage-gated sodium channels required by nodes to reliably transmit spikes increases the risk of ectopic spike generation in the axon. Here we show that ectopic spiking is avoided because K1 channels prevent nodes from responding to slow depolarization; instead, axons respond selectively to rapid depolarization because K1 channels implement a high-pass filter.

View Article and Find Full Text PDF

Additive manufacturing in spatial patterning for spinal cord injury treatment.

Adv Drug Deliv Rev

January 2025

School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 637459 Singapore; Critical Analytics for Manufacturing Personalized-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology, Campus for Research Excellence and Technological Enterprise 138602 Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University 308232 Singapore; School of Materials Science and Engineering 639798 Singapore; National Neuroscience Institute, 11 Jalan Tan Tock Seng 308433 Singapore. Electronic address:

Combinatorial treatments integrating cells and biomolecules within scaffolds have been investigated to address the multifactorial nature of spinal cord injury (SCI). Current regenerative treatments have been ineffective as they do not consider the spatial positions of various cell types to effectively form functional neural pathways. Emulating the complex heterogeneity of cells in the native spinal cord requires translating the existing biological understanding of spatial patterning in neural development, as well as the influence of biomolecule and mechanical patterning on regional specification and axonal regeneration, to engineer a scaffold for spinal cord regeneration.

View Article and Find Full Text PDF

Cell fate decisions during cortical development sculpt the identity of long-range connections that subserve complex behaviors. These decisions are largely dictated by mutually exclusive transcription factors, including CTIP2/Bcl11b for subcerebral projection neurons and BRN1/Pou3f3 for intra-telencephalic projection neurons. We have recently reported that the balance of cortical CTIP2-expressing neurons is altered in a mouse model of DDX3X syndrome, a female-biased neurodevelopmental disorder associated with intellectual disability, autism spectrum disorder, and significant motor challenges.

View Article and Find Full Text PDF

The visual system of teleost fish grows continuously, which is a useful model for studying regeneration of the central nervous system. Glial cells are key for this process, but their contribution is still not well defined. We followed oligodendrocytes in the visual system of adult zebrafish during regeneration of the optic nerve at 6, 24, and 72 hours post-lesion and at 7 and 14 days post-lesion via the sox10:tagRFP transgenic line and confocal microscopy.

View Article and Find Full Text PDF

Introduction: Remyelination of demyelinated axons can occur as an endogenous repair mechanism in multiple sclerosis (MS), but its efficacy varies between both MS individuals and lesions. The molecular and cellular mechanisms that drive remyelination remain poorly understood. Here, we studied the relation between microglia activation and remyelination activity in MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!