We combined the patch-clamp technique with ratiometric fluorescence imaging using the proton-responsive dye BCECF as a luminal probe. Upon application of a steep cytosol-directed potassium ion (K ) gradient in Arabidopsis mesophyll vacuoles, a strong and reversible acidification of the vacuolar lumen was detected, whereas no associated electrical currents were observed, in agreement with electroneutral cation/H exchange. Our data show that this acidification was generated by NHX antiport activity, because: it did not distinguish between K and sodium (Na ) ions; it was sensitive to the NHX inhibitor benzamil; and it was completely absent in vacuoles from nhx1 nhx2 double knockout plants. Our data further show that NHX activity could be reversed, was voltage-independent and specifically impaired by the low-abundance signaling lipid PI(3,5)P , which may regulate salt accumulation in plants by acting as a common messenger to coordinately shut down secondary active carriers responsible for cation and anion uptake inside the vacuole. Finally, we developed a theory based on thermodynamics, which supports the data obtained by our novel experimental approach. This work, therefore, represents a proof-of-principle that can be applied to the study of proton-dependent exchangers from plants and animals, which are barely detectable using conventional techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.17021DOI Listing

Publication Analysis

Top Keywords

patch-clamp resolution
4
resolution functional
4
functional activity
4
activity nonelectrogenic
4
nonelectrogenic vacuolar
4
nhx
4
vacuolar nhx
4
nhx proton/potassium
4
proton/potassium antiporters
4
antiporters inhibition
4

Similar Publications

Background: The crucial steps in beta cell stimulus-secretion coupling upon stimulation with glucose are oscillatory changes in metabolism, membrane potential, intracellular calcium concentration, and exocytosis. The changes in membrane potential consist of bursts of spikes, with silent phases between them being dominated by membrane repolarization and absence of spikes. Assessing intra- and intercellular coupling at the multicellular level is possible with ever-increasing detail, but our current ability to simultaneously resolve spikes from many beta cells remains limited to double-impalement electrophysiological recordings.

View Article and Find Full Text PDF

During neuronal synaptic transmission, the exocytotic release of neurotransmitters from synaptic vesicles in the presynaptic neuron evokes a change in conductance for one or more types of ligand-gated ion channels in the postsynaptic neuron. The standard method of investigation uses electrophysiological recordings of the postsynaptic response. However, electrophysiological recordings can directly quantify the presynaptic release of neurotransmitters with high temporal resolution by measuring the membrane capacitance before and after exocytosis, as fusion of the membrane of presynaptic vesicles with the plasma membrane increases the total capacitance.

View Article and Find Full Text PDF

The patch-clamp technique allows us to eavesdrop the gating behavior of individual ion channels with unprecedented temporal resolution. The signals arise from conformational changes of the channel protein as it makes rapid transitions between conducting and non-conducting states. However, unambiguous analysis of single-channel datasets is challenging given the inadvertently low signal-to-noise ratio as well as signal distortions caused by low-pass filtering.

View Article and Find Full Text PDF

Mild focal cooling selectively impacts computations in dendritic trees.

bioRxiv

November 2024

Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA, 47907.

Focal cooling is a powerful technique to temporally scale neural dynamics. However, the underlying cellular mechanisms causing this scaling remain unresolved. Here, using targeted focal cooling (with a spatial resolution of 100 micrometers), dual somato-dendritic patch clamp recordings, two-photon calcium imaging, transmitter uncaging, and modeling we reveal that a 5°C drop can enhance synaptic transmission, plasticity, and input-output transformations in the distal apical tuft, but not in the basal dendrites of intrinsically bursting L5 pyramidal neurons.

View Article and Find Full Text PDF

Optogenetic estimation of synaptic connections in brain slices.

J Neurosci Methods

December 2024

Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; Institute for Beyond and AI, The University of Tokyo, Tokyo 113-0033, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka 565-0871, Japan.

Background: Detection of synaptic connections is essential for understanding neural circuits. By using optogenetics, current injection, and glutamate uncaging to activate presynaptic cells and simultaneously recording the subsequent response of postsynaptic cells, the presence of synaptic connections can be confirmed. However, these methods present throughput challenges, such as the need for simultaneous multicellular patch-clamp recording and two-photon microscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!