Cellular exposure to tobacco-specific nitrosamines causes formation of promutagenic O -[4-oxo-4-(3-pyridyl)but-1-yl]guanine (O -POB-G) and O -methylguanine (O -Me-G) adducts in DNA. These adducts can be directly repaired by O -alkylguanine-DNA alkyltransferase (AGT). Repair begins by flipping the damaged base out of the DNA helix. AGT binding and base-flipping have been previously studied using pyrrolocytosine as a fluorescent probe paired to the O -alkylguanine lesion, but low fluorescence yield limited the resolution of steps in the repair process. Here, we utilize the highly fluorescent 6-phenylpyrrolo-2'-deoxycytidine (6-phenylpyrrolo-C) to investigate AGT-DNA interactions. Synthetic oligodeoxynucleotide duplexes containing O -POB-G and O -Me-G adducts were placed within the CpG sites of codons 158, 245, and 248 of the p53 tumor suppressor gene and base-paired to 6-phenylpyrrolo-C in the opposite strand. Neighboring cytosine was either unmethylated or methylated. Stopped-flow fluorescence measurements were performed by mixing the DNA duplexes with C145A or R128G AGT variants. We observe a rapid, two-step, nearly irreversible binding of AGT to DNA followed by two slower steps, one of which is base-flipping. Placing 5-methylcytosine immediately 5' to the alkylated guanosine causes a reduction in rate constant of nucleotide flipping. O -POB-G at codon 158 decreased the base flipping rate constant by 3.5-fold compared with O -Me-G at the same position. A similar effect was not observed at other codons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7856187 | PMC |
http://dx.doi.org/10.1002/bip.23405 | DOI Listing |
Nat Commun
December 2024
College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, China.
Early disease diagnosis hinges on the sensitive detection of signaling molecules. Among these, hydrogen sulfide (HS) has emerged as a critical player in cardiovascular and nervous system signaling. On-chip immunoassays, particularly nanoarray-based interfacial detection, offer promising avenues for ultra-sensitive analysis due to their confined reaction volumes and precise signal localization.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Cancer Nanomedicine Lab, Department of Zoology, Periyar University, Salem, TN, India.
We designed a new cyanide sensing probe by one-step synthesis and evaluated it using UV-vis and fluorescent techniques. The active moiety of (Z)-3-(4-(methylthio) phenyl)-2-(4-nitrophenyl) acrylonitrile (NCS) demonstrated fluorescence. The probe NCS showed turn-off fluorescence in the presence of cyanide (CN¯), which has a higher selectivity and sensitivity than other anions.
View Article and Find Full Text PDFTalanta
December 2024
Key Laboratory of Public Health Safety of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, School of Public Health, Hebei University, Baoding, 071002, PR China.
Human serum albumin (HSA) levels in serum and urine is a crucial biomarker for diagnosing liver and kidney diseases. HSA is used to treat various disorders in clinical practice and as an excipient in the production of vaccine or protein drug, ensuring its purity essential for patient safety. However, selective and sensitive detection of HSA remains challenging due to its structural similarity with bovine serum albumin (BSA) and the inherent complexity of biological matrices.
View Article and Find Full Text PDFJACS Au
December 2024
Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarbrücken D-66123, Germany.
is a critical priority pathogen and causes life-threatening acute and biofilm-associated chronic infections. The choice of suitable treatment for complicated infections requires lengthy culturing for species identification from swabs or an invasive biopsy. To date, no fast, pathogen-specific diagnostic tools for infections are available.
View Article and Find Full Text PDFBio Protoc
December 2024
Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama, Japan.
Zebrafish and medaka are valuable model vertebrates for genetic studies. The advent of CRISPR-Cas9 technology has greatly enhanced our capability to produce specific gene mutants in zebrafish and medaka. Analyzing the phenotypes of these mutants is essential for elucidating gene function, though such analyses often yield unexpected results.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!