Alloy clusters of NaLi (4 ≤ x + y ≤ 10) are studied by exploring the potential energy surface in the ab initio MP2 level with the support of a quantum genetic algorithm (QGA). In some cases, the structures have been also refined with DFT and coupled-cluster methods. The general trends of sodium-lithium structures are in line with previous studies. The ionization potentials and polarizabilities to all structures were calculated with MP2 method and the average error between these two properties compared with experimental data was 6% and 13%, respectively. The topological analysis based on quantum theory of atoms in molecules (QTAIM) showed that by increasing the cluster size of the diatomic system there was a decrease of atomic interaction energies. The degree of degeneracy from D3BIA aromaticity index and the analysis of the atomic charges showed the influence (by charge transfer) of the chemical element in lower quantity in the cluster with respect to the other atoms. Our achievements of comparing our theoretical results with available experimental data have demonstrated that our approach can also predict satisfactorily quantum atomic and alloy clusters properties, at least, for low nuclearities.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-020-04576-1DOI Listing

Publication Analysis

Top Keywords

quantum genetic
8
genetic algorithm
8
clusters nali
8
nali 4 ≤ x + y ≤ 10
8
alloy clusters
8
experimental data
8
application quantum
4
algorithm qtaim
4
qtaim analysis
4
analysis study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!