Shunaoxin pills improve the antihypertensive effect of nifedipine and alleviate its renal lipotoxicity in spontaneous hypertension rats.

Environ Toxicol

Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.

Published: March 2021

Shunaoxin pills (SNX) have been used to treat cerebrovascular diseases in China since 2005. Hypertension is a major risk factor for cerebrovascular disease. This study aimed to explore the synergistic antihypertensive effect of SNX and nifedipine and whether SNX could alleviate nifedipine-induced renal lipotoxicity. During administration, systolic blood pressure was measured weekly. After 5 weeks administration, we examined pathological changes of kidney, renal function, the lipid metabolism index, and adipogenesis genes expression in the kidney tissues, and explored its underlying mechanism. Finally, network pharmacology was used for supplement and verification. As a result, SNX improved the antihypertensive effect of nifedipine and apparently improved nifedipine-induced renal pathological changes, dyslipidemia and the levels of adipogenesis gene expression in kidney tissues. SNX reduced the levels of interleukin-6 and interleukin-1β in renal tissues, down-regulated the production of malondialdehyde, and increased superoxide dismutase activity and the protein expression of heme oxygenase-1 in kidney tissues. Network pharmacology also showed that SNX could improve nifedipine-induced renal lipotoxicity. The combination of SNX and nifedipine had certain benefits in the treatment of hypertension.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tox.23044DOI Listing

Publication Analysis

Top Keywords

renal lipotoxicity
12
nifedipine-induced renal
12
kidney tissues
12
shunaoxin pills
8
antihypertensive nifedipine
8
snx nifedipine
8
pathological changes
8
expression kidney
8
network pharmacology
8
snx
7

Similar Publications

PTHrP Promotes RBP4 Expression Under the Control of PPARγ in the Kidney.

Int J Mol Sci

December 2024

Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda. de Atenas s/n, 28922 Alcorcón, Madrid, Spain.

Article Synopsis
  • PTHrP and RBP4 are linked to worse kidney disease outcomes, and their relationship with PPARγ, a protective nuclear receptor, was investigated.
  • The study examined levels of these proteins in different mouse models, including controls, diabetics, and those overexpressing PTHrP.
  • Findings indicated that RBP4 and PTHrP levels increase during kidney pathology, suggesting that insulin and PPARγ play crucial roles in regulating their expression to maintain kidney health.
View Article and Find Full Text PDF

Diabetic nephropathy (DN) is a serious complication of diabetes mellitus and an important cause of end-stage renal disease (ESRD). However, there is still a lack of effective prevention and treatment strategies in clinical practice. As a metabolic disease, DN is accompanied by renal ectopic lipid deposition, and the deposited lipids further aggravate kidney injury.

View Article and Find Full Text PDF

Obesity has emerged as a significant public health crisis, closely linked to the pathogenesis and progression of chronic kidney disease (CKD). This review explores the intricate relationship between obesity-induced lipid metabolism disorders and renal health. We discuss how excessive free fatty acids (FFAs) lead to lipid accumulation in renal tissues, resulting in cellular lipotoxicity, oxidative stress, and inflammation, ultimately contributing to renal injury.

View Article and Find Full Text PDF

Diabetic kidney disease (DKD), which is emerging as a pervasive global health concern and a considerable economic burden, is characterized by a detrimental effect on renal function and structure. Recent research indicates that the progression of DKD is facilitated by lipotoxic injury to tubular epithelial cells (TECs). However, the specific mechanisms that contribute to this cellular damage have yet to be fully elucidated.

View Article and Find Full Text PDF

A common observation in diabetic kidney disease is lipid accumulation, but the mechanism(s) underlying this pathology is unknown. Inhibition of Vascular endothelial growth factor B (VEGF-B) signaling was shown to prevent glomerular lipid accumulation and ameliorated diabetic kidney disease in experimental models. Here, we examined kidney biopsies from patients with Type 2 (84%) and Type 1 diabetes (16%), combined with data mining of RNA-seq dataset analyses in patients with diabetic kidney disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!