Diabetic peripheral neuropathy and metabolic syndrome (MetS) are both global health challenges with well-established diagnostic criteria and significant impacts on quality of life. Clinical observations, epidemiologic evidence, and animal models of disease have strongly suggested MetS is associated with an elevated risk for cryptogenic sensory peripheral neuropathy (CSPN). MetS neuropathy preferentially affects small unmyelinated axons early in its course, and it may also affect autonomic and large fibers. CSPN risk is linked to MetS and several of its components including obesity, dyslipidemia, and prediabetes. MetS also increases neuropathy risk in patients with established type 1 and type 2 diabetes. In this review we present animal data regarding the role of inflammation and dyslipidemia in MetS neuropathy pathogenesis. Several studies suggest exercise-based lifestyle modification is a promising treatment approach for MetS neuropathy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mus.27086 | DOI Listing |
Nat Commun
January 2025
Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
Axonal fusion represents an efficient way to recover function after nerve injury. However, how axonal fusion is induced and regulated remains largely unknown. We discover that ferroptosis signaling can promote axonal fusion and functional recovery in C.
View Article and Find Full Text PDFActa Orthop Belg
December 2024
Atypical mycobacteria can cause rare and atypical infections of the hand. We report the case of an immunocompetent 46-year-old male initially presenting with thumb felon and progressively developing symptoms of carpal tunnel syndrome, tenosynovitis of multiple fingers and a sporotrichoid lymphocutaneous infection causing chronic cutaneous lesions all over the body. We would like to highlight the diagnostic and therapeutic difficulties of these atypical infections, which mimic other conditions and can cause a lot of morbidity.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Laboratory Medicine, People's Hospital of Shenzhen Baoan District, Shenzhen, P. R. China.
Objectives: This case-control study aims to clarify the impact of single nucleotide polymorphisms (SNPs) within the P2X7 gene on susceptibility to type 2 diabetes mellitus (T2DM) and to evaluate their association with diabetic complications.
Methods: This study is comprised with 200 T2DM cases and 200 healthy controls. Seven candidate SNP loci were screened, and TaqMan-MGB real-time PCR technology was used to determine the polymorphic variants of P2X7.
Curr Pain Headache Rep
January 2025
Department of Pain Medicine, Division of Anesthesiology, Critical Care & Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
Purpose Of Review: Quickly referenceable, streamlined, algorithmic approaches for advanced pain management are lacking for patients, trainees, non-pain specialists, and interventional specialists. This manuscript aims to address this gap by proposing a comprehensive, evidence-based algorithm for managing neuropathic, nociceptive, and cancer-associated pain. Such an algorithm is crucial for pain medicine education, offering a structured approach for patient care refractory to conservative management.
View Article and Find Full Text PDFCurr Opin Oncol
January 2025
Department of Hematology, Oncology and Palliative Medicine, Ernst von Bergmann Hospital Potsdam, Potsdam.
Purpose Of Review: Chemotherapy-induced peripheral neuropathy (CIPN) is a substantial adverse effect of anticancer therapy. No effective preventive strategies are established in clinical routine, although some forms of cryotherapy or compression therapy seem to be promising. CIPN is difficult to grade objectively and has mostly relied on a clinician- or patient-based rating that is subjective and not easily reproducible.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!