AI Article Synopsis

  • - The study highlights the significant role of sunlight, particularly blue light, in accelerating litter decomposition in temperate deciduous forests, finding a 120% increase in decay rates when exposed to full sunlight.
  • - Researchers discovered that photodegradation led to a 13% loss of carbon from leaf-litter in areas with about 20% sunlight gaps over one year, showcasing its substantial impact on carbon cycling.
  • - The research also indicates that different types of litter (herbaceous and shrub) decompose faster than tree litter, with the composition of the litter itself influencing how effectively it is broken down by sunlight.

Article Abstract

Litter decomposition determines carbon (C) backflow to the atmosphere and ecosystem nutrient cycling. Although sunlight provides the indispensable energy for terrestrial biogeochemical processes, the role of photodegradation in decomposition has been relatively neglected in productive mesic ecosystems. To quantify the effects of this variation, we conducted a factorial experiment in the understorey of a temperate deciduous forest and an adjacent gap, using spectral-attenuation-filter treatments. Exposure to the full spectrum of sunlight increased decay rates by nearly 120% and the effect of blue light contributed 75% of this increase. Scaled-up to the whole forest ecosystem, this translates to 13% loss of leaf-litter C through photodegradation over the year of our study for a scenario of 20% gap. Irrespective of the spectral composition, herbaceous and shrub litter lost mass faster than tree litter, with photodegradation contributing the most to surface litter decomposition in forest canopy gaps. Across species, the initial litter lignin and polyphenolic contents predicted photodegradation by blue light and ultraviolet B (UV-B) radiation, respectively. We concluded that photodegradation, modulated by litter quality, is an important driver of decomposition, not just in arid areas, but also in mesic ecosystems such as temperate deciduous forests following gap opening.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7898645PMC
http://dx.doi.org/10.1111/nph.17022DOI Listing

Publication Analysis

Top Keywords

litter decomposition
12
mesic ecosystems
8
temperate deciduous
8
blue light
8
litter
7
decomposition
5
photodegradation
5
contribution photodegradation
4
photodegradation litter
4
decomposition temperate
4

Similar Publications

Spatio-temporal analysis of litterfall load in the lower reaches of Qarqan and Tarim rivers using BP neural networks.

Sci Rep

January 2025

State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi, 830011, China.

Litterfall load is crucial in maintaining ecosystem health, controlling wildfires, and estimating carbon stock in arid regions. However, there is a lack of spatiotemporal analysis of litterfall in arid riparian forests. This study aims to estimate Litterfall load using a BP neural network based on vegetation indices from Landsat 5 and 8 satellite images, litterfall inventory data, slope, and distance to major river tributaries.

View Article and Find Full Text PDF

Microbial Community Structure, Diversity, and Succession During Decomposition of Kiwifruit Litters with Different Qualities.

Microorganisms

December 2024

Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China.

There are differences in the litter quality and decomposition rate of kiwifruit varieties, but it is not clear whether these differences are related to microbial communities. The leaf litters of two kiwifruit varieties ( cv 'Hongyang' and cv 'Jinyan') were taken as objects, and the structure, diversity, and succession of the soil microbial communities were analyzed using an in situ decomposition experiment. Moreover, the contents of C, N, P, and K in the litters during decomposition were analyzed.

View Article and Find Full Text PDF

Patterns and Driving Factors of Litter Decomposition Rates in Global Dryland Ecosystems.

Glob Chang Biol

January 2025

State Key Laboratory of Urban and Regional Ecology, Research Center for eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.

Litter decomposition is essential in linking aboveground and belowground carbon, nutrient cycles, and energy flows within ecosystems. This process has been profoundly impacted by global change, particularly in drylands, which are highly susceptible to both anthropogenic and natural disturbances. However, a significant knowledge gap remains concerning the extent and drivers of litter decomposition across different dryland ecosystems, limiting our understanding of its role in ecosystem metabolism.

View Article and Find Full Text PDF

The concept of "blue carbon" is, in this study, critically evaluated with respect to its definitions, measuring approaches, and time scales. Blue carbon deposited in ocean sediments can only counteract anthropogenic greenhouse gas (GHG) emissions if stored on a long-term basis. The focus here is on the coastal blue carbon ecosystems (BCEs), mangrove forests, saltmarshes, and seagrass meadows due to their high primary production and large carbon stocks.

View Article and Find Full Text PDF

Early allelopathic input and later nutrient addition mediated by litter decomposition of invasive affect native plant and facilitate its invasion.

Front Plant Sci

December 2024

Jingjiang College, Institute of Enviroment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China.

Litter decomposition is essential for nutrient and chemical cycling in terrestrial ecosystems. Previous research on litter decomposition has often underestimated its impact on soil nutrient dynamics and allelopathy. To address this gap, we conducted a comprehensive study involving both field and greenhouse experiments to examine the decomposition and allelopathic effects of the invasive L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!