Rationale: Methamphetamine is a highly abused psychostimulant drug and its use remains a major public health concern worldwide with limited effective treatment options. Accumulative evidence reveals the influence of gut microbiota on the brain, behavior, and health as a part of the gut-brain axis but its involvement in modulating this substance use disorder remains poorly understood.
Objective: We sought to determine whether methamphetamine exposure and cessation or withdrawal alter the intestinal gut microbiota as well as characterize cessation-induced behavioral changes.
Methods: Male, Sprague-Dawley rats were administered methamphetamine (2 mg/kg; s.c.) or vehicle (n = 8 per group) twice per day for 14 consecutive days. On various days before, during, and after administration, fecal samples were collected and tests of anxiety- and depressive-like behaviors were conducted.
Results: Methamphetamine administration and cessation did not alter the relative abundance of bacteria but significantly changed the composition of gut bacteria through 16S rRNA sequencing. These changes were normalized after 7 days of methamphetamine cessation. Moreover, acute methamphetamine cessation induced depressive-like behavior, with an increase in immobility in the forced swim test but did not alter anxiety-like behaviors in tests of open field test or elevated plus maze.
Conclusions: These findings provide direct evidence that methamphetamine and its cessation cause gut dysbiosis and that the latter associates with depressive-like behavior in rodents. Our observation will contribute to a better understanding of the function of gut microbiota in the process of substance use disorders and guide the choice of target therapeutics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00213-020-05681-y | DOI Listing |
Gut Microbes
December 2025
Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China.
Necrotizing Enterocolitis (NEC) is a severe, life-threatening inflammatory condition of the gastrointestinal tract, especially affecting preterm infants. This review consolidates evidence from various biomedical disciplines to elucidate the complex pathogenesis of NEC, integrating insights from clinical, microbial, and molecular perspectives. It emphasizes the modulation of NEC-associated inflammatory pathways by probiotics and novel biologics, highlighting their therapeutic potential.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Introduction: Colorectal cancer (CRC) is the second most common cause of cancer-related deaths globally. The gut microbiota, along with adenomatous polyps (AP), has emerged as a plausible contributor to CRC progression. This study aimed to scrutinize the impact of the FadA antigen derived from Fusobacterium nucleatum on the expression levels of the ANXA2 ceRNA network and assess its relevance to CRC advancement.
View Article and Find Full Text PDFClin Rheumatol
January 2025
Department of Rheumatology, Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, People's Republic of China.
Introduction/objectives: Sjogren's syndrome (SS) is a chronic inflammatory and difficult-to-treat autoimmune disease. Timosaponin AIII (TAIII), a plant-derived steroidal saponin, effectively inhibits cell proliferation, induces apoptosis, and exhibits anti-inflammatory properties. This study explored the mechanisms of action of TAIII in SS treatment by studying gut microbiota and short-chain fatty acids (SCFAs) using fecal metabolomics.
View Article and Find Full Text PDFCurr Microbiol
January 2025
State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy Fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China.
Gut mucosal immunity of teleost is mainly governed by mucosa-associated lymphoid tissues (MALT) and indigenous microbiota on mucosal surfaces of gut tract, which can confer protection against pathogenic invasion. However, the probiotic features of bacterial isolates from gut tract of triploid cyprinid fish (TCF) were largely unclear. In this study, Lysinibacillus and Enterobacter strains were isolated for probiotic identification.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
National Engineering Research Center of Green Feeds and Healthy Livestock Industry, Hangzhou, 310058, Zhejiang, China.
The widespread use of antibiotics has led to the emergence of multidrug-resistant bacteria, which pose significant threats to animal health and food safety. Host defense peptides (HDPs) have emerged as promising alternatives because of their unique antimicrobial properties and minimal resistance induction. However, the high costs associated with HDP production and incorporation into animal management practices hinder their widespread application.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!