A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design of metacontinua in the aeroacoustic spacetime. | LitMetric

Design of metacontinua in the aeroacoustic spacetime.

Sci Rep

Department of Engineering, Università degli Studi Roma Tre, via Vito Volterra 62, 00146, Rome, Italy.

Published: October 2020

The effect of background flows on the response of acoustic metamaterials is a key aspect that prevented the full disclosure of their potential in those applications where an aerodynamic velocity field strongly influences the propagation of acoustic disturbances. Indeed, the classic approaches for metamaterial design do not consider the aeroacoustic interaction, and the resulting metamaterials cannot preserve their response when operating in flows. So far, only few authors have addressed the problem, mostly focusing on understanding the phenomenon or identifying corrective techniques with limited usability in practical applications. The present study proposes a general method for the modification of the mechanical properties of acoustic metacontinua to preserve their response in presence of a background flow. The method is based on the application of spacetime coordinate transformations exploiting the spacetime formal invariance of the generalised d'Alembertian. This methodology applies to the equation governing the propagation of acoustic disturbances in a metamaterial having arbitrary constitutive equations independently on the method used for its original design. The approach is validated through numerical simulations, using as a benchmark the problem of the acoustic cloaking of a cylinder impinged by a perturbation generated by an isotropic point source within a flowing medium. Numerical results are obtained for an asymptotic Mach number [Formula: see text].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7584669PMC
http://dx.doi.org/10.1038/s41598-020-74304-5DOI Listing

Publication Analysis

Top Keywords

propagation acoustic
8
acoustic disturbances
8
preserve response
8
acoustic
5
design metacontinua
4
metacontinua aeroacoustic
4
aeroacoustic spacetime
4
spacetime background
4
background flows
4
flows response
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!