Krabbe disease (KD) is caused by a deficiency of galactosylceramidase (GALC), which induces demyelination and neurodegeneration due to accumulation of cytotoxic psychosine. Hematopoietic stem cell transplantation (HSCT) improves clinical outcomes in KD patients only if delivered pre-symptomatically. Here, we hypothesize that the restricted temporal efficacy of HSCT reflects a requirement for GALC in early brain development. Using a novel Galc floxed allele, we induce ubiquitous GALC ablation (Galc-iKO) at various postnatal timepoints and identify a critical period of vulnerability to GALC ablation between P4-6 in mice. Early Galc-iKO induction causes a worse KD phenotype, higher psychosine levels in the rodent brainstem and spinal cord, and a significantly shorter life-span of the mice. Intriguingly, GALC expression peaks during this critical developmental period in mice. Further analysis of this mouse model reveals a cell autonomous role for GALC in the development and maturation of immature T-box-brain-1 positive brainstem neurons. These data identify a perinatal developmental period, in which neuronal GALC expression influences brainstem development that is critical for KD pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7584660PMC
http://dx.doi.org/10.1038/s41467-020-19179-wDOI Listing

Publication Analysis

Top Keywords

brainstem development
8
critical pathogenesis
8
krabbe disease
8
galc
8
galc ablation
8
galc expression
8
developmental period
8
brainstem
4
development requires
4
requires galactosylceramidase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!