AI Article Synopsis

  • Idiopathic pulmonary fibrosis (IPF) is a serious lung disease where airway macrophages are crucial, and newly identified itaconate acts as a natural antifibrotic agent.
  • Itaconate levels and the expression of its synthesizing enzyme are lower in the macrophages of IPF patients compared to healthy individuals, indicating a potential link to disease severity.
  • Studies in mice show that itaconate helps reduce lung fibrosis, suggesting that enhancing its function could be a promising treatment approach for IPF.

Article Abstract

Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease in which airway macrophages (AMs) play a key role. Itaconate has emerged as a mediator of macrophage function, but its role during fibrosis is unknown. Here, we reveal that itaconate is an endogenous antifibrotic factor in the lung. Itaconate levels are reduced in bronchoalveolar lavage, and itaconate-synthesizing cis-aconitate decarboxylase expression () is reduced in AMs from patients with IPF compared with controls. In the murine bleomycin model of pulmonary fibrosis, mice develop persistent fibrosis, unlike wild-type (WT) littermates. Profibrotic gene expression is increased in tissue-resident AMs compared with WT, and adoptive transfer of WT monocyte-recruited AMs rescued mice from disease phenotype. Culture of lung fibroblasts with itaconate decreased proliferation and wound healing capacity, and inhaled itaconate was protective in mice in vivo. Collectively, these data identify itaconate as critical for controlling the severity of lung fibrosis, and targeting this pathway may be a viable therapeutic strategy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7116646PMC
http://dx.doi.org/10.1126/sciimmunol.abc1884DOI Listing

Publication Analysis

Top Keywords

pulmonary fibrosis
12
itaconate
7
fibrosis
6
itaconate controls
4
controls severity
4
severity pulmonary
4
fibrosis idiopathic
4
idiopathic pulmonary
4
fibrosis ipf
4
ipf fatal
4

Similar Publications

Jie-Geng-Tang (JGT), composed of Platycodon grandiflorus (Jacq.) A. DC and Glycyrrhiza uralensis Fisch, is widely used in traditional Chinese medicine for its potential effects in preventing pulmonary fibrosis (PF).

View Article and Find Full Text PDF

Background: Dentists can be exposed to dust and nanoparticles from teeth, dental composites, and metal alloys generated during dental procedures, and exposure to dust can cause respiratory diseases, including pulmonary fibrosis. The authors describe mortality from nonmalignant respiratory diseases (NMRDs) among dentists in the United States.

Methods: The authors submitted information on US dentists who died from 1979 through 2018 to a centralized US death records database to obtain underlying causes of death.

View Article and Find Full Text PDF

The purpose of the present study is to contribute to the establishment of a standard method for evaluating the adverse effects of nanomaterials by intratracheal administration. Low and high doses of multi-walled carbon nanotubes (MWCNTs) were administered to rats in a single administration or the same final dose as the single administration but divided over four administrations. Bronchoalveolar lavage examination on day 14 showed an inflammatory reaction and cytotoxicity in the lung, generally greater at the higher dose, and tending to be greater in the rats with four administrations at both the low and high doses.

View Article and Find Full Text PDF

Circulating MicroRNAs in Idiopathic Pulmonary Fibrosis: A Narrative Review.

Curr Issues Mol Biol

December 2024

Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico.

Idiopathic pulmonary fibrosis (IPF) is a chronic, deathly disease with no recognized effective cure as yet. Furthermore, its diagnosis and differentiation from other diffuse interstitial diseases remain a challenge. Circulating miRNAs have been measured in IPF and have proven to be an adequate option as biomarkers for this disease.

View Article and Find Full Text PDF

Several studies indicate various pharmacological and therapeutic effects of peroxisome proliferator-activated receptors (PPARs) in different disorders. The current review describes the influences of PPARs on respiratory, allergic, and immunologic diseases. Various databases, including PubMed, Science Direct, and Scopus, were searched regarding the effect of PPARs on respiratory and allergic disorders from 1990 to 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!