Poly(ionic liquid) membranes (PILMs) can be potentially applied as polyelectrolyte materials in the separation of ampholytes such as amino acids. Therefore, poly(amino acid ionic liquid) membranes (PAAILMs) were prepared by blending poly(amino acid ionic liquids) (PAAILs) and polyvinylidene fluoride (PVDF) in this study. These PAAILMs were characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and thermal gravimetric analysis (TGA). Moreover, their mechanical properties, antibacterial and antifouling properties were evaluated. The zeta potential, pore size distribution, porosity, and specific surface area of these membranes were also measured. The membranes were used to separate the amino acid mixture of l-phenylalanine and l-aspartic acid, which are essential for the synthesis of aspartame. The PAAILMs can be used for the selective separation of l-phenylalanine and l-aspartic acid through the Donnan effect. A maximum selectivity of 65% was obtained for the mixed amino acids via one-step separation. These PAAILMs have the advantages of low operating pressure, high water flux, good antibacterial and antifouling properties, and excellent reusability, thereby indicating their potential for industrial application in the separation of l-phenylalanine and l-aspartic acid.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2020.10.018DOI Listing

Publication Analysis

Top Keywords

amino acids
12
l-phenylalanine l-aspartic
12
l-aspartic acid
12
liquid membranes
8
polyamino acid
8
acid ionic
8
antibacterial antifouling
8
antifouling properties
8
separation l-phenylalanine
8
acid
6

Similar Publications

The aggregation of proteins, peptides and amino acids has been a keen subject of interest owing to their implications in metabolic disorders. In this work, we investigated the self-aggregation of the unmodified aromatic amino acid l-tryptophan (Trp) into unusual spherical microstructures. Using fluorescence spectroscopy and field emission scanning electron microscopy (FE-SEM), we detail the time-dependent transformation of monomeric tryptophan into spherical aggregates with distinct fluorescence characteristics (λ = 345 nm, λ = 430 nm) compared to the monomer.

View Article and Find Full Text PDF

Background: High temperature is a critical environmental factor leading to mass mortality in oyster aquaculture in China. Recent advancements highlight the physiological regulation function of γ-aminobutyric acid (GABA) in the adaptation of environmental stress.

Methods And Results: This study examined the physiological responses of the Pacific oyster (Crassostrea gigas) upon high temperature exposure, focusing on the histopathological changes in gill, the GABA concentration, the mRNA expression and activities of apoptosis-related genes.

View Article and Find Full Text PDF

Immune and metabolic factors play an important role in the onset and development of insomnia. This study aimed to investigate the causal relationship between insomnia and immune cells and metabolites. Data for 731 immune cell phenotypes, 1400 metabolites, and insomnia in this study were obtained from the GWAS open-access database.

View Article and Find Full Text PDF

Alternative oxidase (AOX) regulates the level of reactive oxygen species and nitric oxide (NO) in plants. While under normoxic conditions it alleviates NO formation, there are several indications that in the conditions of low oxygen such as during seed germination before radicle protrusion, in meristematic stem cells, and in flooded roots AOX can be involved in the production of NO from nitrite. Whereas the first reports considered this role as indirect, more evidence is accumulated that AOX can act as a nitrite: NO reductase.

View Article and Find Full Text PDF

Neuronal processing of external sensory input is shaped by internally generated top-down information. In the neocortex, top-down projections primarily target layer 1, which contains NDNF (neuron-derived neurotrophic factor)-expressing interneurons and the dendrites of pyramidal cells. Here, we investigate the hypothesis that NDNF interneurons shape cortical computations in an unconventional, layer-specific way, by exerting presynaptic inhibition on synapses in layer 1 while leaving synapses in deeper layers unaffected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!