Mitochondria and myosin were isolated from a muscle biopsy of a 9-year-old boy with an unusual congenital myopathy characterized by type I fiber uniformity, jagged Z-line, and transverse network hypertrophy of mitochondria. Biochemical examination of isolated mitochondria showed that only citrate synthase activity was significantly reduced. Electrophoresis of myosin heavy chains and immunoenzymatic analysis of myosin heavy and light chains with antibodies specific to either fast or slow myosins showed that only the slow-type isoform of myosin was detectable. Indirect immunofluorescence of muscle biopsy showed that all muscle fibers homogeneously expressed only the slow type of myosin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1212/wnl.37.10.1658 | DOI Listing |
Pediatr Radiol
January 2025
Department of Pediatric Genetics, Istanbul University-Cerrahpaşa, Cerrahpasa Medical Faculty, 34098, Cerrahpasa, Istanbul, Turkey.
Background: Heterozygous TRPV4 mutations cause a group of skeletal dysplasias characterized by short stature, short trunk, and skeletal deformities.
Objective: The aim of this study is to compare the natural history of clinical and radiologic features of patients with different TRPV4-related skeletal dysplasias.
Materials And Methods: Thirteen patients with a mutation in TRPV4 were included in the study, and 11 were followed for a median of 6.
Neuromuscul Disord
December 2024
University of Florida College of Medicine - Jacksonville, Jacksonville, FL, USA.
Sengers Syndrome (SS) is a rare autosomal recessive mitochondrial disorder caused by mutations in the acylglycerol kinase (AGK) gene on chromosome 7, also known as cardiomyopathic mitochondrial DNA depletion syndrome (MTDPS10). This disorder disrupts mitochondrial DNA function and energy metabolism, presenting with symptoms such as congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, exercise intolerance, and lactic acidosis. Previous research has shown SS affects oxidative phosphorylation and mitochondrial respiration, implicating the TIM22 complex and carrier import.
View Article and Find Full Text PDFMol Genet Genomic Med
January 2025
Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.
Background: Sengers syndrome is an autosomal recessive mitochondrial DNA depletion syndrome characterized by hypertrophic cardiomyopathy, congenital cataracts, skeletal myopathy, exercise intolerance, and lactic acidosis. Dysfunction of acylglycerol kinase (AGK) is responsible for the disease, and several AGK gene variants have been reported.
Methods: We employed a comprehensive genomic analysis approach, including whole-genome sequencing and RNA sequencing, combined with various bioinformatics tools.
BMC Musculoskelet Disord
January 2025
Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, 18 Daoshan Road, Fuzhou, 350001, China.
Background: Congenital muscular dystrophies (CMDs) and myopathies (CMYOs) are a clinically and genetically heterogeneous group of neuromuscular disorders that share common features, such as muscle weakness, hypotonia, characteristic changes on muscle biopsy and motor retardation. In this study, we recruited eleven families with early-onset neuromuscular disorders in China, aimed to clarify the underlying genetic etiology.
Methods: Essential clinical tests, such as biomedical examination, electromyography and muscle biopsy, were applied to evaluate patient phenotypes.
Neurology
February 2025
Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada.
Pathogenic variants in cause congenital muscular dystrophy through hypoglycosylation of alpha-dystroglycan (OMIM #615350). The established phenotypic spectrum of GMPPB-related disorders includes recurrent rhabdomyolysis, limb-girdle muscular dystrophy, neuromuscular transmission abnormalities, and congenital muscular dystrophy with variable brain and eye anomalies. We report a 9-month-old male infant with congenital muscular dystrophy, infantile spasms, and compound heterozygous pathogenic variants (c.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!