The combination of chemotherapeutic drug paclitaxel (PTX) and VEGF siRNA could inhibit cancer development with synergistic efficacy. However, efficient and safe delivery systems with high encapsulation efficiency of PTX and a long-time release of drugs are urgently needed. In this study, novel nanoparticles (PTX/siRNA/FALS) were constructed by using tripeptide lipid (L), sucrose laurate (S), and folate-PEG-DSPE (FA) to co-deliver PTX and siRNA. The cancer cell targeting nanoparticle carrier (PTX/siRNA/FALS) showed anticipated PTX encapsulation efficiency, siRNA retardation ability, improved cell uptake and sustained and controlled drug release. It led to significant anti-tumor activity and by efficient inhibition of VEGF expression and induction of cancer cell apoptosis. Importantly, the biocompatibility of the carriers and low dosage of PTX required for effective therapy greatly reduced the toxicity to mice. The targeting nanoparticles show potential as an effective co-delivery platform for RNAi and chemotherapy drugs, aiming to improve the efficacy of cancer therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7594708PMC
http://dx.doi.org/10.1080/10717544.2020.1827085DOI Listing

Publication Analysis

Top Keywords

tripeptide lipid
8
anti-tumor activity
8
cancer therapy
8
encapsulation efficiency
8
cancer cell
8
cancer
5
ptx
5
co-delivery paclitaxel
4
paclitaxel anti-vegf
4
sirna
4

Similar Publications

Designed and synthesized novel tripeptides targeting diabetes and its related pathologies.

Eur J Med Chem

February 2025

Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India. Electronic address:

In diabetes and its associated pathologies, glycation, α-amylase, and α-glucosidase play crucial roles. This study introduces a novel tripeptide, RWW, designed to target glycation and key enzymes in diabetes management. Using in silico methods, RWW was optimized to interact with the glycation-prone Human serum albumin (HSA) sites, as well as inhibit α-amylase and α-glucosidase.

View Article and Find Full Text PDF
Article Synopsis
  • Contact-dependent growth inhibition (CDI) is a competitive strategy used by bacteria, particularly mediated by proteins called CdiA, which inject toxic regions into neighboring cells to inhibit their growth.
  • CdiA is made up of two distinct domains: the C-terminal ionophore domain, which forms a structure capable of crossing cell membranes, and an N-terminal entry domain that can vary in structure and function, allowing the toxin to insert into other bacteria.
  • Researchers have identified various receptor proteins for these toxins, with significant diversity in immunity proteins (CdiI) that provide protection against specific toxins, highlighting a complex and highly specific interaction network among bacterial species.
View Article and Find Full Text PDF

Wilson's disease (WD) is an inherited disorder that is characterized by abnormal copper metabolism, and treatment of this condition in the clinic focuses on promoting copper ion excretion. Glutathione (GSH) is a tripeptide compound whose active group is a sulfhydryl group, which is involved in many important biochemical reactions. Thus, the antioxidant and integrative detoxification effects of GSH have attracted attention.

View Article and Find Full Text PDF
Article Synopsis
  • * This study investigates the effects of glutathione, a natural tripeptide with various health benefits, on bullfrogs experiencing abnormal liver lipid metabolism through various analyses over 20 days.
  • * The treatment with glutathione improved liver function and survival rates in bullfrogs, increasing beneficial serum enzyme activities while decreasing harmful lipid levels and balancing various metabolic pathways.
View Article and Find Full Text PDF

Cationic ultrashort lipopeptides (USLPs) are promising antimicrobial candidates to combat multidrug-resistant bacteria. Using DICAMs, a newly synthesized family of tripeptides with net charges from -2 to +1 and a fatty amine conjugated to the -terminus, we demonstrate that anionic and neutral zwitterionic USLPs can possess potent antimicrobial and membrane-disrupting activities against prevalent human pathogens such as and The strongest antimicrobials completely halt bacterial growth at low micromolar concentrations, reduce bacterial survival by several orders of magnitude, and may kill planktonic cells and biofilms. All of them comprise either an anionic or neutral zwitterionic peptide attached to a long fatty amine (16-18 carbon atoms) and show a preference for anionic lipid membranes enriched in phosphatidylglycerol (PG), which excludes electrostatic interactions as the main driving force for DICAM action.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!