Antibiotic Adsorption by Metal-Organic Framework (UiO-66): A Comprehensive Kinetic, Thermodynamic, and Mechanistic Study.

Antibiotics (Basel)

Center of Excellence for Nanomaterials for Clean Energy Applications, Joint Centers of Excellence, King Abdulaziz City for Science and Technology, Riyadh 12345, Saudi Arabia.

Published: October 2020

Bacterial antibiotic resistance has been deemed one of the largest modern threats to human health. One of the root causes of antibiotic resistance is the inability of traditional wastewater management techniques, such as filtration and disinfection, to completely eliminate residual antibiotics from domestic and industrial effluents. In this study, we examine the ability of ; a metal-organic framework (MOF); in removing the antibiotic Doxycycline from aqueous environments. This study's findings suggest that UiO-66 was able to remove nearly 90% of the initial Doxycycline concentration. To correlate the isothermal data, Langmuir and Freundlich models were used. It was determined that the Langmuir model was best suited. Pseudo-first and -second order models were examined for kinetic data, where the pseudo-second order model was best suited-consistent with the maximum theoretical adsorption capacity found by the Langumir model. Thermodynamic analysis was also examined by studying UiO-66 adsorption under different temperatures. Mechanisms of adsorption were also analyzed through measuring adsorption at varying pH levels, thermogravimetric analysis (TGA), Infrared spectroscopy (IR) and Brunauer-Emmet-Teller (BET). This study also explores the possibility of recycling MOFs through exposure to gamma radiation, heat, and heating under low pressure, in order for UiO-66 to be used in multiple, consecutive cycles of Doxycycline removal.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7589841PMC
http://dx.doi.org/10.3390/antibiotics9100722DOI Listing

Publication Analysis

Top Keywords

metal-organic framework
8
antibiotic resistance
8
model best
8
antibiotic
4
antibiotic adsorption
4
adsorption metal-organic
4
uio-66
4
framework uio-66
4
uio-66 comprehensive
4
comprehensive kinetic
4

Similar Publications

The journal retracts the article "Thermal Analysis of a Metal-Organic Framework ZnxCo1-X-ZIF-8 for Recent Applications" [...

View Article and Find Full Text PDF

Organophosphorus pesticides are the most extensively utilized agrichemicals in the world. They play a crucial role in regulating crop growth, immunizing against pests, and improving yields, while their unregulated residues exert serious detrimental effects on both the environment and human health. Many efforts have been made in the world to monitor organophosphorus pesticides and solve the issues caused by them.

View Article and Find Full Text PDF

Recent Advancements in CoO-Based Composites for Enhanced Electrocatalytic Water Splitting.

Micromachines (Basel)

November 2024

Department of Fiber System Engineering, Yeungnam University, 280 Dehak-Ro, Gyeongsan 38541, Republic of Korea.

The pursuit of efficient and economical catalysts for water splitting, a critical step in hydrogen production, has gained momentum with the increasing demand for sustainable energy. Among the various electrocatalysts developed to date, cobalt oxide (CoO) has emerged as a promising candidate owing to its availability, stability, and catalytic activity. However, intrinsic limitations, including low catalytic activity and poor electrical conductivity, often hinder its effectiveness in electrocatalytic water splitting.

View Article and Find Full Text PDF

In this study, comparative analysis of calculated and experimental C NMR shifts for a wide range of model platinum complexes showed that, on the whole, the theory reproduces the experimental data well. The chemical shifts of carbon atoms directly bonded to Pt can be calculated well only within the framework of the fully relativistic matrix Dirac-Kohn-Sham (mDKS) level ( = 0.9973, = 3.

View Article and Find Full Text PDF

Modifications and Applications of Metal-Organic-Framework-Based Materials for Photocatalysis.

Molecules

December 2024

MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.

Metal-organic frameworks (MOFs) represent a category of crystalline materials formed by the combination of metal ions or clusters with organic linkers, which have emerged as a prominent research focus in the field of photocatalysis. Owing to their distinctive characteristics, including structural diversity and configurations, significant porosity, and an extensive specific surface area, they provide a flexible foundation for various potential applications in photocatalysis. In recent years, researchers have tackled many issues in the MOF-based photocatalytic yield.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!