The exploration of unconventional catalysts for the vapor-liquid-solid synthesis of one-dimensional materials promises to yield new morphologies and functionality. Here, we show, for the model ZnO system, that unusual nanostructures can be produced via a semiconductor (Ge) catalyst. As well as the usual straight nanowires, we describe two other distinct morphologies: twisted nanowires and twisted nanotubes. The twisted nanotubes show large hollow cores and surprisingly high twisting rates, up to 9°/μm, that cannot be easily explained through the Eshelby twist model. A combination of ex situ and in situ transmission electron microscopy measurements suggest that the hollow core results from a competition between growth and etching at the Ge-ZnO interface during synthesis. The twisting rate is consistent with a softening of elastic rigidity. These results indicate that the use of unconventional, nonmetallic catalysts provides opportunities to synthesize unusual oxide nanostructures with potentially useful properties.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/abc452DOI Listing

Publication Analysis

Top Keywords

vapor-liquid-solid synthesis
8
twisted nanotubes
8
one-dimensional twisted
4
twisted tubular
4
tubular structures
4
structures zinc
4
zinc oxide
4
oxide semiconductor-catalyzed
4
semiconductor-catalyzed vapor-liquid-solid
4
synthesis exploration
4

Similar Publications

Sowing Clean-Release Salt Catalyst for the Synthesis of Contamination-Free Single-walled Carbon Nanotube Arrays.

Small

January 2025

Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, China.

Horizontal arrays of single-walled carbon nanotubes (SWCNTs) have shown immense potential for application in emerging devices due to their excellent electrical and thermal properties. The direct growth of SWCNT arrays using high-activity metal catalysts is one of the promising methods to approach the mass production of dense SWCNT arrays. However, an inevitable obstacle lies in the post-purification of metal residual.

View Article and Find Full Text PDF

The PbSnTe family of compounds possess a wide range of intriguing and useful physical properties, including topologically protected surface states, robust ferroelectricity, remarkable thermoelectric properties, and potential topological superconductivity. Compared to bulk crystals, one-dimensional (1D) nanowires (NWs) offer a unique platform to enhance the functional properties and enable new capabilities, e.g.

View Article and Find Full Text PDF
Article Synopsis
  • High-quality single crystalline GeSe can enhance the performance of solar cells and electronic devices compared to polycrystalline films.
  • Researchers successfully used vapor-liquid-solid growth combined with direct lateral vapor-solid incorporation to produce uniform, large GeSe ribbons with controlled thickness and no defects.
  • Electrical tests show that these ribbons have high Hall mobility and potential for applications like catalysis, thanks to their jagged edges when grown from mixed vapors.
View Article and Find Full Text PDF

Controllable synthesize of ZnS/PbS nanostructure and their structural and morphological properties.

Heliyon

September 2024

Atomic Energy Commission, Department of Physics, P. O. Box 6091, Damascus, Syria.

ZnS is an appealing material with wide potential applications in optoelectronics, sensors, and photocatalysis due to its fascinating properties, low cost, and eco-friendly. In this paper, we report the synthesis of ZnS nanowires and nanorods via a simple thermal-evaporation method using different concentrations of PbS as a dopant. The prepared nanostrutures were investigated in detalis using a scanning electron microscopy (SEM), X-ray diffraction (XRD), and high resolution transmission electron microscopy (HRTEM).

View Article and Find Full Text PDF

In recent years, 1D nanostructure-based devices have achieved widespread usage in various fields, such as sensors, energy harvesters, transistors, and electrodes owing to their exceptional and distinct properties. The pioneering work of Dr. R.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!