The exploration of unconventional catalysts for the vapor-liquid-solid synthesis of one-dimensional materials promises to yield new morphologies and functionality. Here, we show, for the model ZnO system, that unusual nanostructures can be produced via a semiconductor (Ge) catalyst. As well as the usual straight nanowires, we describe two other distinct morphologies: twisted nanowires and twisted nanotubes. The twisted nanotubes show large hollow cores and surprisingly high twisting rates, up to 9°/μm, that cannot be easily explained through the Eshelby twist model. A combination of ex situ and in situ transmission electron microscopy measurements suggest that the hollow core results from a competition between growth and etching at the Ge-ZnO interface during synthesis. The twisting rate is consistent with a softening of elastic rigidity. These results indicate that the use of unconventional, nonmetallic catalysts provides opportunities to synthesize unusual oxide nanostructures with potentially useful properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/abc452 | DOI Listing |
Small
January 2025
Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, China.
Horizontal arrays of single-walled carbon nanotubes (SWCNTs) have shown immense potential for application in emerging devices due to their excellent electrical and thermal properties. The direct growth of SWCNT arrays using high-activity metal catalysts is one of the promising methods to approach the mass production of dense SWCNT arrays. However, an inevitable obstacle lies in the post-purification of metal residual.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
Department of Physics, Indiana University, Bloomington, Indiana 47405, United States.
The PbSnTe family of compounds possess a wide range of intriguing and useful physical properties, including topologically protected surface states, robust ferroelectricity, remarkable thermoelectric properties, and potential topological superconductivity. Compared to bulk crystals, one-dimensional (1D) nanowires (NWs) offer a unique platform to enhance the functional properties and enable new capabilities, e.g.
View Article and Find Full Text PDFSmall
December 2024
Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
Heliyon
September 2024
Atomic Energy Commission, Department of Physics, P. O. Box 6091, Damascus, Syria.
ZnS is an appealing material with wide potential applications in optoelectronics, sensors, and photocatalysis due to its fascinating properties, low cost, and eco-friendly. In this paper, we report the synthesis of ZnS nanowires and nanorods via a simple thermal-evaporation method using different concentrations of PbS as a dopant. The prepared nanostrutures were investigated in detalis using a scanning electron microscopy (SEM), X-ray diffraction (XRD), and high resolution transmission electron microscopy (HRTEM).
View Article and Find Full Text PDFSmall Methods
December 2024
Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
In recent years, 1D nanostructure-based devices have achieved widespread usage in various fields, such as sensors, energy harvesters, transistors, and electrodes owing to their exceptional and distinct properties. The pioneering work of Dr. R.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!