Background: To develop a radiomics signature for predicting overall survival (OS)/progression-free survival (PFS) in patients with medulloblastoma (MB), and to investigate the incremental prognostic value and biological pathways of the radiomics patterns.
Methods: A radiomics signature was constructed based on magnetic resonance imaging (MRI) from a training cohort (n = 83), and evaluated on a testing cohort (n = 83). Key pathways associated with the signature were identified by RNA-seq (GSE151519). Prognostic value of pathway genes was assessed in a public GSE85218 cohort.
Findings: The radiomics-clinicomolecular signature predicted OS (C-index 0.762) and PFS (C-index 0.697) better than either the radiomics signature (C-index: OS: 0.649; PFS: 0.593) or the clinicomolecular signature (C-index: OS: 0.725; PFS: 0.691) alone, with a better calibration and classification accuracy (net reclassification improvement: OS: 0.298, P = 0.022; PFS: 0.252, P = 0.026). Nine pathways were significantly correlated with the radiomics signature. Average expression value of pathway genes achieved significant risk stratification in GSE85218 cohort (log-rank P = 0.016).
Interpretation: This study demonstrated radiomics signature, which associated with dysregulated pathways, was an independent parameter conferring incremental value over clinicomolecular factors in survival predictions for MB patients.
Funding: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7581926 | PMC |
http://dx.doi.org/10.1016/j.ebiom.2020.103093 | DOI Listing |
Alzheimers Dement (N Y)
October 2024
Eli Lilly and Company Indianapolis Indiana USA.
Introduction: Alzheimer's disease is partially characterized by the progressive accumulation of aggregated tau-containing neurofibrillary tangles. Although the association between accumulated tau, neurodegeneration, and cognitive decline is critical for disease understanding and clinical trial design, we still lack robust tools to predict individualized trajectories of tau accumulation. Our objective was to assess whether brain imaging biomarkers of flortaucipir-positron emission tomography (PET), in combination with clinical and genomic measures, could predict future pathological tau accumulation.
View Article and Find Full Text PDFBMC Med Imaging
January 2025
Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong, Road, Nanning, Guangxi Zhuang Autonomous Region, China.
Objectives: To develop ultrasound-based radiomics models and a clinical model associated with inflammatory markers for predicting intrahepatic cholangiocarcinoma (ICC) lymph node (LN) metastasis. Both are integrated for enhanced preoperative prediction.
Methods: This study retrospectively enrolled 156 surgically diagnosed ICC patients.
Abdom Radiol (NY)
January 2025
The First Affiliated Hospital of Jinan University, Guangzhou, China.
Objective: Accurate preoperative evaluation of myometrial invasion (MI) is essential for treatment decisions in endometrial cancer (EC). However, the diagnostic accuracy of commonly utilized magnetic resonance imaging (MRI) techniques for this assessment exhibits considerable variability. This study aims to enhance preoperative discrimination of absence or presence of MI by developing and validating a multimodal deep learning radiomics (MDLR) model based on MRI.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
Diagnosing lung cancer from indeterminate pulmonary nodules (IPLs) remains challenging. In this multi-institutional study involving 2032 participants with IPLs, we integrate the clinical, radiomic with circulating cell-free DNA fragmentomic features in 5-methylcytosine (5mC)-enriched regions to establish a multiomics model (clinic-RadmC) for predicting the malignancy risk of IPLs. The clinic-RadmC yields an area-under-the-curve (AUC) of 0.
View Article and Find Full Text PDFNat Commun
January 2025
Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!