In the present study, 100 Avian-Pathogenic Escherichia coli (APEC) isolates from colibacillosis-suspected broilers and 100 Avian Faecal Escherichia coli (AFEC) isolates from healthy broilers in Iran were examined by PCR for confirmation of their serogroups and phylogenetic background, and their association with ten virulence-associated genes (VAG) including fimC, iutA, chuA, sitA, iss, cvaA/B, hylA, stx1, stx2, and yjaA. Serogroups O78, O1, O2 and O18 were the prominent strains including 54 % of the APEC and 23 % of the AFEC strains. At phylotyping, the majority of APEC strains belonged to phylogenetic group E (22 %) while for the AFEC strains, half of the isolates were not assigned to any group but the predominant phylogroup was E (27 %). Virulence genotyping, revealed that the predominant VAGs were iutA (97 %), fimC (87 %) and iss (84 %) among APEC strains, and fimC (95 %), iss (93 %) and sitA (87 %) in AFEC strains. This is the first time that phylogroup E is described as predominant phylogroup among APEC strains also, this is the first report on the presence of the stx1 gene in APEC strains isolated from broilers in Iran. The results of the present study indicate that VAGs are more prevalent in APEC strains belonging to O2 and O78 serogroups, also phylogroups E and D have more frequency of VAGs than other phylogroups. Therefore, the APEC strains belonging to O2 and O78 serogroups and phylogroups E and D probably have more pathogenicity to broilers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cimid.2020.101558 | DOI Listing |
Poult Sci
January 2025
Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, PR China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, PR China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, PR China. Electronic address:
Avian pathogenic Escherichia coli (APEC) is a major threat to the poultry industry, causing bloodstream and extraintestinal infections. Type II toxin-antitoxin (TA) systems are known to aid bacterial pathogens in adapting to stress, promoting persister cell formation, and enhancing virulence. While type II TA systems have been extensively studied in many pathogens, APEC-derived TAs have received limited attention.
View Article and Find Full Text PDFPoult Sci
December 2024
Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens GA 30602, USA. Electronic address:
Avian pathogenic Escherichia coli (APEC) is a significant cause of worldwide morbidity, mortality, and production loss in the poultry industry. Here, we characterized 115 E. coli isolates from avian-diagnosed colibacillosis cases from Georgia, USA in 2022 as part of a year two follow on surveillance using both current and a newly developed serogrouping tool (Klao9-SeroPCR).
View Article and Find Full Text PDFVet Microbiol
December 2024
Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, Jiangsu 225009, PR China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Ministry of Agriculture and Rural Affairs, Yangzhou, Jiangsu 225009, PR China. Electronic address:
Avian pathogenic Escherichia coli (APEC) constitutes a significant threat to poultry health worldwide, causing colibacillosis and inflicting substantial economic losses. The ability to resist serum-mediated killing is a key virulence factor enabling APEC to circumvent the host immune system and establish systemic infection. In this study, we employed mariner-based transposon mutagenesis to generate a mutant library of APEC strain E058 and screened for mutants with reduced serum resistance.
View Article and Find Full Text PDFAvian Pathol
December 2024
The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, 572024, China.
Avian pathogenic (APEC) is one of the major causes of poultry morbidity worldwide, severely reducing egg production and embryo hatchability in laying hens. Hainan Wenchang chicken is an important poultry breed in Hainan, China, and its culture has been affected by APEC for a long time. In this study, in order to investigate the causes of low hatchability and a large number of weak chicks during the breeding of Wenchang chicken, a total of 130 strains of APEC were isolated from 591 chicken embryo samples collected from five large-scale farms of Wenchang chicken in Hainan area.
View Article and Find Full Text PDFPoult Sci
December 2024
College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin 150030, China. Electronic address:
Avian pathogenic Escherichia coli (APEC) infections result in significant economic losses and reduced animal welfare. Historically, antibiotics and vaccinations currently control APEC infections in poultry, however, antibiotic-resistant strains and heterologous serotypes limit their effectiveness. Meanwhile, antibiotic-resistant strains can be transmitted to humans via contact with animals, food or their environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!