SP1 activated-lncRNA SNHG1 mediates the development of epilepsy via miR-154-5p/TLR5 axis.

Epilepsy Res

Department of Neurology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, PR China. Electronic address:

Published: December 2020

Background: Epilepsy is a one of the most frequent serious neurological disorders characterized by enduring and unprovoked seizures. The treatments to epilepsy are very limited and many patients are even resistant to current medications due to the elusive pathogenesis. Here, we sought to investigate the functions of lncRNA SNHG1 and miR-154-5p in epilepsy.

Methods: We employed both in vivo mouse model and in vitro cell model to study epilepsy. H&E staining and Nissl staining were used to examine the morphology of hippocampus and measure neuronal injury, respectively. TUNEL staining and flow cytometry were performed to determine cell apoptosis. Caspase-3 activity assay kit was used to assess caspase-3 activity. RT-qPCR and western blot were conducted to measure the levels of SNHG1, miR-154-5p, TLR5, and SP1, respectively. Dual luciferase reporter assay was employed to validate the binding relationship of SNHG1/miR-154-5p and miR-154-5p/TLR5. ChIP assay was performed to confirm the transcriptional regulation of SP1 on SNHG1.

Results: Elevated SNHG1 and decreased miR-154-5p were observed in both in vivo mouse model and in vitro cell model of epilepsy. Knockdown of SNHG1 or transfection with miR-154-5p mimics significantly ameliorated Mg free-induced neuronal injury in SH-SY5Y cells. SNHG1 acted as a sponge of miR-154-5p. Moreover, SNHG1 promoted neuronal injury via acting as a miR-154-5p sponge to disinhibit TLR5. Additionally, SP1 activated the transcriptional activity of SNHG1.

Conclusion: In summary, SP1 transcriptionally activated-SNHG1 contributes to the development of epilepsy via directly regulating miR-154-5p/TLR5 axis, which provides novel targets in treatment of epilepsy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.eplepsyres.2020.106476DOI Listing

Publication Analysis

Top Keywords

neuronal injury
12
development epilepsy
8
mir-154-5p/tlr5 axis
8
snhg1 mir-154-5p
8
vivo mouse
8
mouse model
8
model vitro
8
vitro cell
8
cell model
8
caspase-3 activity
8

Similar Publications

Neuropathic pain following peripheral nerve injury results from maladaptive changes in neurons and immune cells contribution to mechanisms underlying chronic pain. Specifically, in dorsal root ganglia (DRG), sensory neuron cell bodies release extracellular vesicles (EVs) which promote pro-inflammatory macrophage accumulation that facilitates nociceptive signalling. Here, we show that macrophages shuttle EVs to neurons.

View Article and Find Full Text PDF

Background: Traumatic brain injury (TBI) is a change in brain function or evidence of brain pathology caused by external mechanical forces. Brain Derived Neurotrophic Factor (BDNF) is a neurotropin that functions as a neuron protective. Nigella sativa L is reported to have an antioxidant effect, administration of Nigella Sativa L to rats treated with ischemia-reperfusion brain injury.

View Article and Find Full Text PDF

Aggregation of microtubule-associated tau protein is a distinct hallmark of several neurodegenerative disorders such as Alzheimer's disease (AD), dementia with Lewy bodies (DLB), and progressive supranuclear palsy (PSP). Tau oligomers are suggested to be the primary neurotoxic species that initiate aggregation and propagate prion-like structures. Furthermore, different diseases are shown to have distinct structural characteristics of aggregated tau, denoted as polymorphs.

View Article and Find Full Text PDF

Gap junction intercellular communications regulates activation of SARM1 and protects against axonal degeneration.

Cell Death Dis

January 2025

State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.

Sterile alpha and Toll/interleukin-1 receptor motif containing 1 (SARM1), a nicotinamide adenine dinucleotide (NAD)-utilizing enzyme, mediates axon degeneration (AxD) in various neurodegenerative diseases. It is activated by nicotinamide mononucleotide (NMN) to produce a calcium messenger, cyclic ADP-ribose (cADPR). This activity is blocked by elevated NAD level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!