Nobiletin alleviates high-fat diet-induced nonalcoholic fatty liver disease by modulating AdipoR1 and gp91 expression in rats.

J Nutr Biochem

Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand.

Published: January 2021

Nobiletin, one of the polymethoxylated flavonoids isolated from citrus peels, is reported to possess various biological activities. The current study investigates the effect and possible mechanisms of nobiletin on nonalcoholic fatty liver disease (NAFLD) in high-fat diet (HFD)-fed rats. Male Sprague-Dawley rats were administrated with HFD and fructose (15%) in drinking water for 16 weeks to induce NAFLD. HFD-fed rats were treated with nobiletin (20 or 40 mg/kg/day) or vehicle for the last 4 weeks. Treatment of HFD-fed rats with nobiletin significantly reduced systolic blood pressure, adiposity, hyperlipidemia, insulin resistance, hepatic lipids content, NAFLD activity score and liver fibrosis. Nobiletin significantly increased plasma adiponectin levels, together with up-regulation of liver adiponectin receptor 1 (AdipoR1) expression. Additionally, decreased malondialdehyde levels and increased superoxide dismutase activity in plasma and hepatic tissue, consistent with down-regulation of liver NADPH oxidase subunit gp91 expression, were also observed after nobiletin treatment. Furthermore, high dose of nobiletin exhibited higher therapeutic effect as a compared to low dose. These findings suggest that nobiletin alleviates HFD-induced NAFLD and metabolic dysfunction in rats. There might be an association between the observed inhibitory effect of nobiletin on NAFLD and modulation of AdipoR1 and gp91.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jnutbio.2020.108526DOI Listing

Publication Analysis

Top Keywords

hfd-fed rats
12
nobiletin
10
nobiletin alleviates
8
nonalcoholic fatty
8
fatty liver
8
liver disease
8
adipor1 gp91
8
gp91 expression
8
rats nobiletin
8
rats
6

Similar Publications

We recently reported that a chimeric peptide (GEP44) targeting the glucagon-like peptide-1 receptor (GLP-1R) and neuropeptide Y1- and Y2-receptors decreased body weight (BW), energy intake and core temperature in diet-induced obese (DIO) male and female mice. Given that GEP44 was found to reduce core temperature (surrogate measure of energy expenditure (EE)) in DIO mice, we hypothesized that GEP44 would reduce EE in male and female high fat diet (HFD)-fed rats. To test this, rats were maintained on a HFD for at least 4 months to elicit DIO prior to undergoing a sequential 2-day vehicle period, 2-day GEP44 (50 nmol/kg) period and a minimum 2-day washout period and detailed measures of energy homeostasis.

View Article and Find Full Text PDF

Cepharanthine relieves nonalcoholic steatohepatitis through inhibiting STAT1/CXCL10 axis-mediated lipogenesis and inflammatory responses.

J Ethnopharmacol

January 2025

Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, 400016, PR China. Electronic address:

Ethnopharmacological Relevance: Stephania rotunda Lour., a medicinal herb, has been utilized in both Traditional Chinese Medicine (TCM) and Traditional Indian Medicine to treat conditions such as fever, dysentery, and inflammation. Cepharanthine (CEP), a primary active ingredient of Stephania rotunda Lour.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD) is linked to choline metabolism. The present study investigated the effect of holy basil ( L.) flower water extract (OSLY) on MASLD with choline metabolism as an underlying mechanism.

View Article and Find Full Text PDF

High-fat diet (HFD) consumption disrupts the gut microbiome, instigating metabolic disturbance, brain pathology, and cognitive decline via the gut-brain axis. Probiotic and prebiotic supplementation have been found to improve gut microbiome health, suggesting they could be effective in managing neurodegenerative disorders. This study explored the potential benefits of the probiotic strain Lactobacillus plantarum 20174 (L.

View Article and Find Full Text PDF

Peroxisome Proliferator Activator α Agonist Clofibrate Induces Pexophagy in Coconut Oil-Based High-Fat Diet-Fed Rats.

Biology (Basel)

December 2024

Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan.

Peroxisomes are crucial for fatty acid β-oxidation in steatosis, but the role of pexophagy-the selective autophagy of peroxisomes-remains unclear. This study investigated the effects of the peroxisome proliferator-activated receptor-α (PPARα) agonist clofibrate on pexophagy in a coconut oil-based high-fat diet (HFD)-induced hepatocarcinogenesis model. Rats were divided into four groups: control, clofibrate, HFD, and HFD with clofibrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!