Omics research in vascular calcification.

Clin Chim Acta

The Second Affiliated Hospital of Guilin Medical University, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China. Electronic address:

Published: December 2020

Vascular calcification (VC), the pathological process of hydroxyapatite mineral deposition in the vascular system, is closely associated with aging, atherosclerotic plaque formation, cardiovascular disease (CVD) and diabetes mellitus (DM). Studies have shown that VC is related to cellular phenotypic changes, extracellular vesicles, disordered calcium phosphate homeostasis and an imbalance between inducers and inhibitors of VC. Unfortunately, there is currently no effective preventive or targeted treatment for this disorder. Recently, the evolution of omics technology (genomics, epigenomics, transcriptomics, proteomics and metabolomics) has paved the way for elucidation of complex biochemical processes and, as such, may provide new insight on VC. Accordingly, we conducted a review of articles published over the last twenty years and herein focus on current and future potential of omics technology in clarifying mechanisms of this disease process. Identification of new biomarkers will provide additional tools in characterizing this pathology and will further assist in the development of potential therapeutic targets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cca.2020.10.021DOI Listing

Publication Analysis

Top Keywords

vascular calcification
8
omics technology
8
omics vascular
4
calcification vascular
4
calcification pathological
4
pathological process
4
process hydroxyapatite
4
hydroxyapatite mineral
4
mineral deposition
4
deposition vascular
4

Similar Publications

Background: The impact of moderate-to-vigorous physical activity (MVPA) on all-cause mortality in type 2 diabetes (T2D) patients with severe abdominal aortic calcification (SAAC) remains unclear.

Methods: We analyzed data from the National Health and Nutrition Examination Survey (NHANES) 2013-2014, including T2D patients aged 40 years and older. AAC was assessed using the Kauppila scoring system, with SAAC defined as a score >6.

View Article and Find Full Text PDF

Aim: Microcalcification increases the vulnerability of plaques and has become an important driver of acute cardiovascular events in diabetic patients. However, the regulatory mechanisms remain unclear. DJ-1, a multifunctional protein, may play a potential role in the development of diabetic complications.

View Article and Find Full Text PDF

Background: Vascular disorders are proposed as modifiable risk factors for dementia; yet, physiologic mechanisms connecting vascular disorders to cognitive impairment remain unknown. We examined subclinical cardiovascular measures to determine which predict global cognitive decline and domain specific cognitive impairment and point to potential pathways linking subclinical vascular disease and dementia.

Methods: MESA includes a diverse cohort of 6,814 participants free from clinical cardiovascular disease with follow‐up over 6 clinical examinations and annual follow‐up calls.

View Article and Find Full Text PDF

Background: Vascular risk factors captured in midlife represent modifiable features of cardiovascular disease (CVD), stroke, dementia, and dementia‐related neuropathology. Subclinical measures of CVD may help identify specific structural and function aspects underlying vascular contributions to cognitive impairment and dementia over and above conventional dementia risk scores.

Method: The MESA study followed a diverse cohort of 6,814 adults aged 45‐84 years over 6 clinical examinations and annual follow‐up calls since baseline, 2000‐2002.

View Article and Find Full Text PDF

Background: The serum calcification propensity test (or T50 test) might become a standard tool for the assessment of vascular calcification risk and T50 might be a valuable biomarker in clinical trials of treatments intended to slow the progression of vascular calcification. Literature data suggest that non-calcium-containing phosphate binders can influence T50 in chronic dialysed patients. However, it is not clear whether similar interventions are effective in patients at earlier stages of chronic kidney disease (CKD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!