Although transport of molecules into cells via electroporation is a common biomedical procedure, its protocols are often based on trial and error. Despite a long history of theoretical effort, the underlying mechanisms of cell membrane electroporation are not sufficiently elucidated, in part, because of the number of independent fitting parameters needed to link theory to experiment. Here, we ask if the electroporation behavior of a reduced cell membrane is consistent with time-resolved, atomistic, molecular dynamics (MD) simulations of phospholipid bilayers responding to electric fields. To avoid solvent and tension effects, giant unilamellar vesicles (GUVs) were used, and transport kinetics were measured by the entry of the impermeant fluorescent dye calcein. Because the timescale of electrical pulses needed to restructure bilayers into pores is much shorter than the time resolution of current techniques for membrane transport kinetics measurements, the lifetimes of lipid bilayer electropores were measured using systematic variation of the initial MD simulation conditions, whereas GUV transport kinetics were detected in response to a nanosecond timescale variation in the applied electric pulse lifetimes and interpulse intervals. Molecular transport after GUV permeabilization induced by multiple pulses is additive for interpulse intervals as short as 50 ns but not 5-ns intervals, consistent with the 10-50-ns lifetimes of electropores in MD simulations. Although the results were mostly consistent between GUV and MD simulations, the kinetics of ultrashort, electric-field-induced permeabilization of GUVs were significantly different from published results in cells exposed to ultrashort (6 and 2 ns) electric fields, suggesting that cellular electroporation involves additional structures and processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7677249PMC
http://dx.doi.org/10.1016/j.bpj.2020.09.028DOI Listing

Publication Analysis

Top Keywords

transport kinetics
12
molecular dynamics
8
cell membrane
8
electric fields
8
interpulse intervals
8
transport
5
dye transport
4
transport bilayers
4
bilayers agrees
4
agrees lipid
4

Similar Publications

LiCoO2 batteries for 3C electronics demand high charging voltage and wide operating temperature range, which are virtually impossible for existing electrolytes due to aggravated interfacial parasitic reactions and sluggish kinetics. Herein, we report an electrolyte design strategy based on a partially fluorinated ester solvent (i.e.

View Article and Find Full Text PDF

Two short-term feeding trials were conducted on , with the interaction between dietary zinc (Zn) and fat level in trial 1 and with the interaction between dietary Zn and n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) in trial 2, focusing on postprandial plasma parameters, intestinal Zn and fat uptake and transport. After 4-week feeding interventions, samples were collected at different postprandial time points, ranging from 0 to 36/38 h after feeding. Results showed that increased Zn level in feed significantly increased the postprandial plasma Zn level in trial 1 (8-9°C).

View Article and Find Full Text PDF
Article Synopsis
  • A magnetic carboxymethylated β-cyclodextrin (Mag/CM-β-CD) was created as a drug delivery system, forming an inclusion complex with the drug amantadine (Amn) and analyzed using various scientific techniques.
  • The study found that Mag/CM-β-CD could encapsulate about 81.51% of amantadine and demonstrated a pH-sensitive drug release, with faster release at acidic conditions, following a Fickian diffusion mechanism.
  • Cytotoxicity tests showed that the Mag/CM-β-CD/Amn complex had low toxicity on HUVEC cells, indicating it could be an effective and safe option for targeted drug delivery applications.
View Article and Find Full Text PDF

Low molecular weight fucoidan (LMWF) has been proved to be more potent than its prototype, many degradation methods have been used to prepare LMWF. This study is conducted to further explore the biological activities of LMWF prepared by ultrasound based on anticoagulation, antioxidation, and inhibition of urate induced pyroptosis and reabsorption transporters overexpression in human renal tubular epithelial cells. Data revealed that ultrasound successfully degraded fucoidan to be LMWF, the product treated for no more than 2.

View Article and Find Full Text PDF

Experimental and kinetic modeling study of oxidative degradation of benzene and phenol in supercritical water.

J Environ Manage

January 2025

Shaanxi Key Laboratory of New Transportation Energy and Automotive Energy Saving, School of Energy and Electrical Engineering, Chang'an University, Xi'an, Shaanxi, 710064, PR China.

Benzene and phenol are representative aromatic compounds existing commonly in wastewater. The kinetics of oxidative degradation of benzene and phenol in supercritical water have been investigated in a flow reactor at 823 K and 250 atm, with the excess oxygen ratio ranging from 0.5 to 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!