Green lacewings (Neuroptera: Chrysopidae) are key biological control agents found in a broad range of crops. Given the importance of enhancing their presence and conservation, in this study, we aim to identify and to determine the relative importance of the pollen consumed by Chrysoperla lucasina (Lacroix, 1936) from 29 pollen types offered by 51 native plant species sown in an experimental farm in Villarrubia in the south of Spain. For the purposes of this study, C. lucasina specimens were captured in the late spring of 2016 and 2017. The pollen types and other components in the alimentary canal of C. lucasina were microscopically identified using the transparency method, which is a novel technique applied to green lacewings captured in the field. The results show that (i) C. lucasina feeds on over half of the pollen types offered by the sown plant species, with no differences in behaviour by sex or year; (ii) Capsella bursa-pastoris was the most frequently identified pollen type in the alimentary canal; (iii) the majority of pollen types identified correspond to sown native plant species and not to surrounding plant species; and that (iv) most of the adults studied also consumed honeydew. Our feeding study has important implications for the selection of plant mixtures for ground cover restoration and flower vegetation strips in Mediterranean agroecosystems, which complements our previous findings on how C. lucasina use native plant species as host and reproduction sites. The plant species Capsella bursa-pastoris and Biscutella auriculata, which are best suited to provide pollen, host and reproduction sites for C. lucasina in late spring, should consequently be included in the proposed plant mixtures for Mediterranean agroecosystems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7584243 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0239847 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!