A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3051
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3053

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3053
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Meta-analysis of predictive symptoms for Ebola virus disease. | LitMetric

Meta-analysis of predictive symptoms for Ebola virus disease.

PLoS Negl Trop Dis

National Infection Service, Public Health England, London, United Kingdom.

Published: October 2020

Introduction: One of the leading challenges in the 2013-2016 West African Ebola virus disease (EVD) outbreak was how best to quickly identify patients with EVD, separating them from those without the disease, in order to maximise limited isolation bed capacity and keep health systems functioning.

Methodology: We performed a systematic literature review to identify all published data on EVD clinical symptoms in adult patients. Data was dual extracted, and random effects meta-analysis performed for each symptom to identify symptoms with the greatest risk for EVD infection.

Results: Symptoms usually presenting late in illness that were more than twice as likely to predict a diagnosis of Ebola, were confusion (pOR 3.04, 95% CI 2.18-4.23), conjunctivitis (2.90, 1.92-4.38), dysphagia (1.95, 1.13-3.35) and jaundice (1.86, 1.20-2.88). Early non-specific symptoms of diarrhoea (2.99, 2.00-4.48), fatigue (2.77, 1.59-4.81), vomiting (2.69, 1.76-4.10), fever (1.97, 1.10-4.52), muscle pain (1.65, 1.04-2.61), and cough (1.63, 1.24-2.14), were also strongly associated with EVD diagnosis.

Conclusions: The existing literature fails to provide a unified position on the symptoms most predictive of EVD, but highlights some early and late stage symptoms that in combination will be useful for future risk stratification. Confirmation of these findings across datasets (or ideally an aggregation of all individual patient data) will aid effective future clinical assessment, risk stratification tools and emergency epidemic response planning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7641466PMC
http://dx.doi.org/10.1371/journal.pntd.0008799DOI Listing

Publication Analysis

Top Keywords

ebola virus
8
virus disease
8
risk stratification
8
symptoms
7
evd
6
meta-analysis predictive
4
predictive symptoms
4
symptoms ebola
4
disease introduction
4
introduction leading
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!