In interactive visual machine learning (IVML), humans and machine learning algorithms collaborate to achieve tasks mediated by interactive visual interfaces. This human-in-the-loop approach to machine learning brings forth not only numerous intelligibility, trust, and usability issues, but also many open questions with respect to the evaluation of the IVML system, both as separate components, and as a holistic entity that includes both human and machine intelligence. This article describes the challenges and research gaps identified in an IEEE VIS workshop on the evaluation of IVML systems.

Download full-text PDF

Source
http://dx.doi.org/10.1109/MCG.2020.3017064DOI Listing

Publication Analysis

Top Keywords

machine learning
16
interactive visual
12
visual machine
8
evaluation ivml
8
machine
5
challenges evaluating
4
evaluating interactive
4
learning
4
learning systems
4
systems interactive
4

Similar Publications

The levels of capsaicin (CAP) and hydroxy-α-sanshool (α-SOH) are crucial for evaluating the spiciness and numbing sensation in spicy hotpot seasoning. Although liquid chromatography can accurately measure these compounds, the method is invasive. This study aimed to utilize hyperspectral imaging (HSI) combined with machine learning for the nondestructive detection of CAP and α-SOH in hotpot seasoning.

View Article and Find Full Text PDF

By analyzing facial features to perform expression recognition and health monitoring, facial perception plays a pivotal role in noninvasive, real-time disease diagnosis and prevention. Current perception routes are limited by structural complexity and the necessity of a power supply, making timely and accurate monitoring difficult. Herein, a self-powered poly(vinyl alcohol)-gellan gum-glycerol thermogalvanic gel patch enabling facial perception is developed for monitoring emotions and atypical pathological states.

View Article and Find Full Text PDF

We present an application of our new theoretical formulation of quantum dynamics, moment propagation theory (MPT) (Boyer et al., J. Chem.

View Article and Find Full Text PDF

In unsupervised transfer learning for medical image segmentation, where existing algorithms face the challenge of error propagation due to inaccessible source domain data. In response to this scenario, source-free domain transfer algorithm with reduced style sensitivity (SFDT-RSS) is designed. SFDT-RSS initially pre-trains the source domain model by using the generalization strategy and subsequently adapts the pre-trained model to target domain without accessing source data.

View Article and Find Full Text PDF

The increasing utilization of deep learning models in drug repositioning has proven to be highly efficient and effective. In this study, we employed an integrated deep-learning model followed by traditional drug screening approach to screen a library of FDA-approved drugs, aiming to identify novel inhibitors targeting the TNF-α converting enzyme (TACE). TACE, also known as ADAM17, plays a crucial role in the inflammatory response by converting pro-TNF-α to its active soluble form and cleaving other inflammatory mediators, making it a promising target for therapeutic intervention in diseases such as rheumatoid arthritis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!