The competition between polar distortions and BO_{6} octahedra rotations is well known to be critical in explaining the ground state of various ABO_{3} perovskites. Here, we show from first-principles calculations that a similar competition between interlayer rumpling and rotations is playing a key role in layered Ruddlesden-Popper (RP) perovskites. This competition explains the suppression of oxygen octahedra rotations and hybrid improper ferroelectricity in A_{3}B_{2}O_{7} compounds with rare-earth ions in the rocksalt layer and also appears relevant to other phenomena like negative thermal expansion and the dimensionality determined band gap in RP systems. Moreover, we highlight that RP perovskites offer more flexibility than ABO_{3} perovskites in controlling such a competition and four distinct strategies are proposed to tune it. These strategies are shown to be promising for designing new multiferroics. They are generic and might also be exploited for tuning negative thermal expansion and band gap.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.125.157601DOI Listing

Publication Analysis

Top Keywords

octahedra rotations
12
suppression oxygen
8
oxygen octahedra
8
abo_{3} perovskites
8
negative thermal
8
thermal expansion
8
band gap
8
unraveling suppression
4
rotations
4
rotations a_{3}b_{2}o_{7}
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!