Generating laboratory flows resembling atmospheric turbulence is of prime importance to study the effect of wind fluctuations on objects such as buildings, vehicles, or wind turbines. A novel driving of an active grid following a stochastic process is used to generate velocity fluctuations with correlation lengths, and, thus, integral scales, much larger than the transverse dimension of the wind tunnel. The combined action of the active grid and a modulation of the fan speed allows one to generate a flow characterized by a four-decade inertial range and an integral scale Reynolds number of 2×10^{7}.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.125.154503 | DOI Listing |
ACS Environ Au
January 2025
Department of Geography, Hong Kong Baptist University, Hong Kong SAR 999077, China.
Brown carbon (BrC) has been recognized as an important light-absorbing carbonaceous aerosol, yet understanding of its influence on regional climate and air quality has been lacking, mainly due to the ignorance of regional coupled meteorology-chemistry models. Besides, assumptions about its emissions in previous explorations might cause large uncertainties in estimates. Here, we implemented a BrC module into the WRF-Chem model that considers source-dependent absorption and avoids uncertainties caused by assumptions about emission intensities.
View Article and Find Full Text PDFThe eastern equatorial Atlantic hosts a productive marine ecosystem that depends on upward supply of nitrate, the primary limiting nutrient in this region. The annual productivity peak, indicated by elevated surface chlorophyll levels, occurs in the Northern Hemisphere summer, roughly coinciding with strengthened easterly winds. For enhanced productivity in the equatorial Atlantic, nitrate-rich water must rise into the turbulent layer above the Equatorial Undercurrent.
View Article and Find Full Text PDFQuantum key distribution (QKD) is critical for future proofed secure communication. Satellites will be necessary to mediate QKD on a global scale. The limitations of the existing quantum memory and repeater technology mean that twin-field QKD (TF-QKD) provides the most feasible near-term solution to perform QKD with an untrusted satellite.
View Article and Find Full Text PDFAtmospheric turbulence is one of the key factors that affect the stability and performance of satellite-to-ground laser communication (SGLC). Predicting turbulence could provide a decisive strategy for the SGLC system to ensure communication performance and is thus of great significance. In this Letter, we proposed a hybrid multi-step prediction method for atmospheric turbulence.
View Article and Find Full Text PDFFree-space optical (FSO) communication has the advantages of large bandwidth and high security and being license-free, making it the preferred solution for addressing the "last kilometer" of information transmission. However, it is susceptible to fluctuations in the received optical power (ROP) due to atmospheric turbulence and pointing errors, resulting in the inevitable free-space optical communication transmission performance degradation. In this work, we experimentally verified the turbulence resistance of the cylindrical vector beam (CVB) over a 3 km long free-space field trial link.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!