Several animal studies have showed the beneficial effects of physical exercise (PE) on brain function and health. Alzheimer's Disease (AD) is the most common type of dementia, characterized by the presence of aggregated extracellular amyloid-beta (Aβ) and neurofibrillary tangles, with progressive cognitive decline. Therapeutic approaches such as PE showed to be effective in halting AD progression. Here, we present a systematic review about PE and AD. The search was carried out using the PubMed and LILACS databases. The following keywords were used: Alzheimer; PE; animal model. All found studies adopted aerobic exercise training as the PE protocol (100%). We identified running on treadmill as the most commonly used PE routine (62.5%). The duration of each session, intensity, frequency, and period of training most used were 60 min/day (62.5%), moderate intensity (87.5%), 5 days/week (62.5%), and 4 (37.5%) or 12 (37.5%) weeks, respectively. The AD animal models most used were the Tg APP/PS1ΔE9 (25%), models based on i.c.v. infusion of AβOs (25%) and streptozotocin (25%). All protocols used rodents to their experiments (100%), but mice were the most common (62.5%). Finally, the main results presented in all studies were capable to reduce significantly AD consequences, such as reducing Aβ or pro-inflammatory proteins levels (100%). The lack of resistance training protocols in animal models of AD indicates a huge gap that should be investigated in future studies. We suggest that PE protocols must be adapted according to the specie, lineage and life span of the animal.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11011-020-00633-zDOI Listing

Publication Analysis

Top Keywords

animal models
12
physical exercise
8
protocols animal
8
alzheimer's disease
8
systematic review
8
animal
6
protocols
4
exercise protocols
4
models
4
models alzheimer's
4

Similar Publications

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that is primarily known for causing severe joint and muscle symptoms, but its pathological effects have extended beyond these tissues. In this study, we conducted a comprehensive proteomic analysis across various organs in rodent and nonhuman primate models to investigate CHIKV's impact on organs beyond joints and muscles and to identify key host factors involved in its pathogenesis. Our findings reveal significant species-specific similarities and differences in immune responses and metabolic regulation, with proteins like Interferon-Stimulated Gene 15 (ISG15) and Retinoic Acid-Inducible Gene I (RIG-I) playing crucial roles in the anti-CHIKV defense.

View Article and Find Full Text PDF

Bone marrow stimulation treatment by bone marrow stromal cells (BMSCs) released from the bone medullary cavity and differentiated into cartilage via microfracture surgery is a frequently employed technique for treating articular cartilage injuries, yet the treatment presents a main drawback of poor cartilage regeneration in the elderly. Prior research indicated that aging could decrease the stemness capacity of BMSCs, thus we made a hypothesis that increasing old BMSCs (OBMSCs) stemness might improve the results of microfracture in the elderly. First, we investigated the correlation between microfracture outcomes and BMSCs stemness using clinical data and animal experiments.

View Article and Find Full Text PDF

Introduction Fournier's gangrene (FG) is a rapidly progressing necrotizing fasciitis. The Fournier's Gangrene Severity Index (FGSI), in conjunction with the Charlson Comorbidity Index (CCI), has been used as a mortality predictor during hospitalization. Patients with diabetes have also been shown to be at an increased risk for the development of FG.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!