Nanoporous TaN electrochemical anodization followed by nitridation for solar water oxidation.

Dalton Trans

Department of Advanced Chemicals and Engineering, Chonnam National University, Yongbong-ro 77, Yongbong-dong, Gwangju 500-757, Republic of Korea.

Published: November 2020

Nanoporous tantalum nitride (Ta3N5) is a promising visible-light-driven photoanode for photoelectrochemical (PEC) water splitting with a narrow band gap of approximately 2.0 eV. It can utilize a large portion of the solar spectrum up to 600 nm to improve the activity of photooxidation reactions because of enhanced light scattering and an overall increase of the surface area with high light absorption and carrier collection. Herein, we synthesized a new n-type nanoporous tantalum nitride film on Ta foil by electrochemical anodization with a fluorinated electrolyte. Post-annealing in a nitrogen/ammonia mixture gas environment then transformed amorphous TaOx to crystalline Ta3N5. Effects of annealing temperature on the microstructure, optical properties, and PEC properties of samples were then investigated under changeable stoichiometry of Ta and N elements in the Ta-based nitride film. Results showed that the film annealed at 1000 °C showed high crystallinity, high visible light absorption, and a highly conductive interlayer between the substrates, resulting in the highest photocurrent density (JSC) of ∼0.25 mA cm-2 at 1.23 VRHE in PEC water splitting. In addition, depending on the annealing temperature, it is possible to engineer band alignment in the nanoporous Ta3N5 layer, allowing a beneficial charge transfer process.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0dt03056bDOI Listing

Publication Analysis

Top Keywords

electrochemical anodization
8
nanoporous tantalum
8
tantalum nitride
8
pec water
8
water splitting
8
light absorption
8
nitride film
8
annealing temperature
8
nanoporous
4
nanoporous tan
4

Similar Publications

Development of sustainable synthesis methods of organic electrode materials (OEMs) for sodium (Na)-ion batteries must take hold rapidly in large scale-synthesis if subsequent commercialisation is to occur. We report a facile and rapid gram-scale synthesis method based on microwave irradiation for disodium naphthalene-2,6-dicarboxylate (Na-NDC) and mono/disodium benzene-1,4-dicarboxylate (Na-BDC) as model compounds. Phase purity and formation of materials was confirmed by various characterisation techniques.

View Article and Find Full Text PDF

Salt-in-presalt electrolyte solutions for high-potential non-aqueous sodium metal batteries.

Nat Nanotechnol

January 2025

Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA.

Room-temperature non-aqueous sodium metal batteries are viable candidates for cost-effective and safe electrochemical energy storage. However, they show low specific energy and poor cycle life as the use of conventional organic-based non-aqueous electrolyte solutions enables the formation of interphases that cannot prevent degradations at the positive and negative electrodes. Here, to promote the formation of inorganic NaF-rich interphases on both negative and positive electrodes, we propose the salt-in-presalt (SIPS) electrolyte formulation strategy.

View Article and Find Full Text PDF

Beyond Polymerization: In Situ Coupled Fluorination Enables More Stable Interfaces for Solid-State Lithium Batteries.

J Am Chem Soc

January 2025

Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.

In situ polymerization strategies hold great promise for enhancing the physical interfacial stability in solid-state batteries, yet (electro)chemical degradation of polymerized interfaces, especially at high voltages, remains a critical challenge. Herein, we find interphase engineering is crucial for the polymerization process and polymer stability and pioneer an in situ polymerization-fluorination (Poly-FR) strategy to create durable interfaces with excellent physical and (electro)chemical stabilities, achieved by designing a bifunctional initiator for both polymerization and on-surface lithium donor reactions. The integrated in situ fluorination converts LiCO impurities on LiNiCoMnO (NCM811) surfaces into LiF-rich interphases, effectively inhibiting the aggressive (de)lithiation intermediates and protecting the interface from underlying chemical degradation, thereby surpassing the stability limitations of polymerization alone.

View Article and Find Full Text PDF

Designing advanced materials that effectively mitigate the poor cycle life of battery-type electrodes with high specific capacities is crucial for next-generation energy storage systems. Herein, graphene oxide-ceria (GO-CeO) nanocomposite synthesized via a facile wet chemical route is explored as cathode for high-performance supercapacitors. The morphological analysis suggests fine ceria (CeO) nanoparticles dispersed over ultrathin graphene oxide (GO) sheets while structural studies reveal face-centered cubic phase of CeO in the nanocomposite.

View Article and Find Full Text PDF

Exploring P-(Fe,V)-Codoped Metastable-Phase β-NiMoO for Improving the Performance of Overall Water Splitting.

Inorg Chem

January 2025

School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China.

It is especially essential to develop high-performance and low-cost nonprecious metal catalysts for large-scale hydrogen production. A large number of electrochemical catalysts composited by transition metal centers has been reported; however, it is still a great challenge to design and manipulate target electrocatalysts to realize high overall water-splitting activity at the atomic level. Herein, we develop totally new P-(Fe,V)-codoped metastable-phase β-NiMoO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!