Introduction: This study was designed to report the biological effect of nickel oxide nanoparticles (NiO NPs) in albino mice.
Material And Methods: Five weeks old albino mice of both sex were intraperitoneally injected either with 20 mg (low dose) or 50 mg/mL saline/kg body weight (high dose) of NiO NPs for 14 days. Saline-treated controls were maintained in parallel. Complete blood count, selected serum biochemical parameters and oxidative stress biomarkers from vital organs were determined in all subjects.
Results: Male mice treated with NiO NPS had increased blood urea nitrogen, elevated superoxide dismutase (SOD) in liver elevated MDA in liver, kidney and heart and reduced catalase activity in heart and kidney. Female mice treated with NiO NPs had significantly reduced serum albumin and total proteins, SOD in lungs and elevated MDA in liver.
Discussion: We are reporting that intraperitoneal injections of NiO NPs for 14 days drastically affect blood serum parameters and oxidative stress biomarkers from vital organs of albino mice.
Conclusion: Toxic effects of NiO NPs were dose and sex dependent and they were more pronounced at higher dose and in male mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/1354750X.2020.1841829 | DOI Listing |
Food Chem
January 2025
Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India.
The present study included the environmentally friendly production of stable nickel nanoparticles (NiO NPs) using lemon and tomato, followed by their analysis and evaluation for their antibacterial properties against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, and Bacillus cereus. The Nickel oxide nanoparticles produced exhibited their maximum absorption at 276 nm in the UV-vis spectrum. The image captured FESEM revealed smooth nanofibers with an average diameter of around 259 ± 3.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electronics and Communication Engineering, National Institute of Technology Nagaland, Chumukedima, Nagaland, 797103, India.
NiO nanoparticles (NPs) synthesized using glancing angle deposition (GLAD) technique over MgZnO thin film was used to design a novel memory device. The NiO NPs with average diameter ~ 9.5 nm was uniformly distributed over the MgZnO thin film surface.
View Article and Find Full Text PDFHeliyon
January 2025
Advanced Materials Research Laboratory, Department of Physics, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia.
Herein, we report the biosynthesis of pure NiO and NiO nanoparticles doped with Silver (Ag@NiO NPs) 2, 4, 6, and 8 mol% from aloe vera extract by solution combustion method at 400 °C and calcined at 500 °C for 3 h. By utilizing silver-doped NiO nanoparticles synthesized with Aloe Vera latex, which not only enhances the material's properties but also promotes environmentally friendly fabrication methods. The morphological, structural elemental compositions were analysed through SEM, HRTEM, SAED, XRD and EDAX.
View Article and Find Full Text PDFSci Rep
January 2025
Physics Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
An electro- and optically favorable quaternary nanocomposite film was produced by solution-casting nickel oxide nanoparticles (NiO NPs) into polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS). Based on transmission electron microscopy (TEM) and X-ray diffraction (XRD) observations, the synthesized NiO NPs have a cubic phase and a diameter between 10 and 45 nm. The complexity and interactions observed through XRD patterns, UV-visible spectra, and FTIR measurements suggest that the NPs are not just dispersed within the polymer matrix, but are interacting with it, leading to enhanced dielectric properties and AC electrical conductivity.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary.
Currently, the increasing use of nickel metal-organic frameworks (Ni-MOF) and nickel oxide nanoparticles (NiO NPs) has raised concerns regarding their potential environmental impact on wastewater treatment systems. Herein, the responses of aerobic granular sludge (AGS) and algal-bacterial aerobic granular sludge (AB-AGS) to Ni-MOF and NiO NPs were investigated. The results showed that Ni-MOF concentrations of 50, 100, and 200 mg/L significantly reduced nutrient removal in both systems, particularly affecting ammonia, nitrite, and phosphorus removal, while denitrification processes remained stable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!