Introduction: This study was designed to report the biological effect of nickel oxide nanoparticles (NiO NPs) in albino mice.

Material And Methods: Five weeks old albino mice of both sex were intraperitoneally injected either with 20 mg (low dose) or 50 mg/mL saline/kg body weight (high dose) of NiO NPs for 14 days. Saline-treated controls were maintained in parallel. Complete blood count, selected serum biochemical parameters and oxidative stress biomarkers from vital organs were determined in all subjects.

Results: Male mice treated with NiO NPS had increased blood urea nitrogen, elevated superoxide dismutase (SOD) in liver elevated MDA in liver, kidney and heart and reduced catalase activity in heart and kidney. Female mice treated with NiO NPs had significantly reduced serum albumin and total proteins, SOD in lungs and elevated MDA in liver.

Discussion: We are reporting that intraperitoneal injections of NiO NPs for 14 days drastically affect blood serum parameters and oxidative stress biomarkers from vital organs of albino mice.

Conclusion: Toxic effects of NiO NPs were dose and sex dependent and they were more pronounced at higher dose and in male mice.

Download full-text PDF

Source
http://dx.doi.org/10.1080/1354750X.2020.1841829DOI Listing

Publication Analysis

Top Keywords

nio nps
24
parameters oxidative
12
oxidative stress
12
stress biomarkers
12
biomarkers vital
12
vital organs
12
nickel oxide
8
oxide nanoparticles
8
serum biochemical
8
biochemical parameters
8

Similar Publications

The present study included the environmentally friendly production of stable nickel nanoparticles (NiO NPs) using lemon and tomato, followed by their analysis and evaluation for their antibacterial properties against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, and Bacillus cereus. The Nickel oxide nanoparticles produced exhibited their maximum absorption at 276 nm in the UV-vis spectrum. The image captured FESEM revealed smooth nanofibers with an average diameter of around 259 ± 3.

View Article and Find Full Text PDF

NiO nanoparticles (NPs) synthesized using glancing angle deposition (GLAD) technique over MgZnO thin film was used to design a novel memory device. The NiO NPs with average diameter ~ 9.5 nm was uniformly distributed over the MgZnO thin film surface.

View Article and Find Full Text PDF

Herein, we report the biosynthesis of pure NiO and NiO nanoparticles doped with Silver (Ag@NiO NPs) 2, 4, 6, and 8 mol% from aloe vera extract by solution combustion method at 400 °C and calcined at 500 °C for 3 h. By utilizing silver-doped NiO nanoparticles synthesized with Aloe Vera latex, which not only enhances the material's properties but also promotes environmentally friendly fabrication methods. The morphological, structural elemental compositions were analysed through SEM, HRTEM, SAED, XRD and EDAX.

View Article and Find Full Text PDF

An electro- and optically favorable quaternary nanocomposite film was produced by solution-casting nickel oxide nanoparticles (NiO NPs) into polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS). Based on transmission electron microscopy (TEM) and X-ray diffraction (XRD) observations, the synthesized NiO NPs have a cubic phase and a diameter between 10 and 45 nm. The complexity and interactions observed through XRD patterns, UV-visible spectra, and FTIR measurements suggest that the NPs are not just dispersed within the polymer matrix, but are interacting with it, leading to enhanced dielectric properties and AC electrical conductivity.

View Article and Find Full Text PDF

Currently, the increasing use of nickel metal-organic frameworks (Ni-MOF) and nickel oxide nanoparticles (NiO NPs) has raised concerns regarding their potential environmental impact on wastewater treatment systems. Herein, the responses of aerobic granular sludge (AGS) and algal-bacterial aerobic granular sludge (AB-AGS) to Ni-MOF and NiO NPs were investigated. The results showed that Ni-MOF concentrations of 50, 100, and 200 mg/L significantly reduced nutrient removal in both systems, particularly affecting ammonia, nitrite, and phosphorus removal, while denitrification processes remained stable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!