The contribution of surface roughness of nonporous polymeric membranes to their gas separation and mechanical properties was studied in terms of surface free energy. The membranes samples were prepared based on glassy polymers with different chain rigidity, namely polysulfone (PSU), cellulose triacetate (CTA), and poly(vinyl alcohol) (PVA). The results were obtained by atomic force and scanning electron microscopy (AFM and SEM) with individual gas permeation, wettability, and mechanical testing. The specific surface free energy (as well as its polar and dispersive components) for the polymers was calculated by the Owens-Wendt method. It was proven that the surface roughness of the polymer membranes affects both energy components; however, the degree of this influence depends on the chemical nature of the corresponding polymer. Moreover, it was assumed that the dispersive energy component is inversely correlated with any gases' total permeability. In contrast, the polar one is inversely correlated with the permeability by gases with the ability for site-specific interactions. The gas separation results confirmed this assumption. It was also shown that the mechanical properties of the polymer membranes are also influenced by the surface energy, namely, its dispersive component.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.0c02140 | DOI Listing |
Biomech Model Mechanobiol
January 2025
Cardiac Surgery Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
Percutaneous coronary interventions in highly calcified atherosclerotic lesions are challenging due to the high mechanical stiffness that significantly restricts stent expansion. Intravascular lithotripsy (IVL) is a novel vessel preparation technique with the potential to improve interventional outcomes by inducing microscopic and macroscopic cracks to enhance stent expansion. However, the exact mechanism of action for IVL is poorly understood, and it remains unclear whether the improvement in-stent expansion is caused by either the macro-cracks allowing the vessel to open or the micro-cracks altering the bulk material properties.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
Marine biofouling and corrosion have become the main problems affecting the development of the marine industry. Silicone-based coatings have been widely used for antifouling and anticorrosion due to their low surface energy. However, the poor adhesion and low mechanical stability of these materials limit their application in complex marine environments.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
February 2025
Faculty of Electrical Engineering, Czestochowa University of Technology, 17 Al. Armii Krajowej, Częstochowa, PL-42200, Poland.
We report a complete set of elastic, piezooptic and photoelastic tensor constants of scheelite crystals CaMoO, BaMoO, BaWO and PbWO determined by density functional theory (DFT) calculations using the quantum chemical software package CRYSTAL17. The modulation parameter, i.e.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Birck Nanotechnology Center and the School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
High heat fluxes in electronic devices must be effectively dissipated to prevent local hotspots, which are critical for long-term device reliability. In particular, advanced semiconductor packaging trends toward thin form factor products increase the need for understanding and improving in-plane conduction heat spreading in anisotropic materials. The 2D laser-based Ångstrom method, an extension of traditional Ångstrom and lock-in thermography techniques, measures in-plane thermal properties of anisotropic sheet-like materials.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
DNA nanostructures (DNs) have gained popularity in various biomedical applications due to their unique properties, including structural programmability, ease of synthesis and functionalization, and low cytotoxicity. Effective utilization of DNs in biomedical applications requires a fundamental understanding of their interactions with living cells and the mechanics of cellular uptake. Current knowledge primarily focuses on how the physicochemical properties of DNs, such as mass, shape, size, and surface functionalization, affect uptake efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!