A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exergetic sustainability analysis of industrial furnace: a case study. | LitMetric

Exergetic sustainability analysis of industrial furnace: a case study.

Environ Sci Pollut Res Int

School of Information, Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, 2007, Australia.

Published: March 2021

Industrial furnaces play a significant role in industrial energy consumption and production. Minimizing losses from these furnaces can contribute to industrial sustainability. Exergy being an optimization tool can reduce energy loss and emission from furnaces and contribute to environmental sustainability. Currently, no exergy-based sustainability analysis has been adopted in the literature. In this analysis, a reheater furnace that is fired by natural gas is analyzed in terms of energy and exergy utilization. To address the sustainability of the furnace, several exergy-based sustainability parameters have been used. The overall energy efficiency of the furnace is 93.40%, while exergy efficiency is only 27.37%. From sustainability analysis, it is found that 72.63% of the fuel is diminished from the furnace, and it contributes to a lower sustainability index of 1.38. Higher exergy losses from this furnace positively affect the environment, which is validated from the higher value of the environmental destruction coefficient, the environmental destruction index, and the lower value of the environmental benign index. The value of the environmental destruction coefficient is 3.65, and the value of the environmental benign index is 0.38. Recovering waste energy and optimizing auxiliary equipment will increase the value of sustainability parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-11280-3DOI Listing

Publication Analysis

Top Keywords

sustainability analysis
12
environmental destruction
12
furnaces contribute
8
sustainability
8
exergy-based sustainability
8
sustainability parameters
8
destruction coefficient
8
environmental benign
8
furnace
6
environmental
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!