Ethiopia is land of geographical contrasts with elevations that range from 125 m below sea level in the Danakil Depression to 4533 m above sea level in the Semien Mountains, a world heritage site. The diverse climate of various ecological regions of the country has driven the establishment of diverse vegetation, which range from Afroalpine vegetation in the mountains to the arid and semi-arid vegetation type in the lowlands. The formation of Ethiopian vegetation is highly connected to the climate and geological history of the country. Highland uplift and rift formation due to volcanic forces formed novel habitats with different topography and climatic conditions that have ultimately become drivers for vegetation diversification. Due to Ethiopia's connection with the temperate biome in the north and the Arabian Peninsula during the dry glacial period, the biotic assemblage of Ethiopian highlands consists of both Afrotropical and palearctic biota. In general, eight distinct vegetation types have been identified in Ethiopia, based mainly on elevation and climate gradients. These vegetation types host their own unique species, but also share several common species. Some of the vegetation types are identified as centers of endemism and have subsequently been identified globally as the East African Afromontane hotspot. Ethiopia is biologically rich, with more than 6500 vascular plant species. Of these species, 12% are endemic mainly due to geographical isolation and unique climatic conditions. However, researchers have yet to extensively investigate the ecology, phenology, as well as the evolutionary, genetics, and conservation status of Ethiopian vegetations at community and species level over space and time. This lack of research is a barrier to achieving the goal of zero global plant extinctions. Taxa extinction risk assessment has not been extensively carried out for majority of Ethiopian species. Detailed research is needed to explore how vegetation and species respond to rapidly growing environmental change. Currently, human-induced climate change and habitat fragmentation are severely threatening the country's biodiversity, and the consequences of these effects have not been studied at large. Furthermore, we still lack scientific evidence on how micro- and macro-ecological and evolutionary processes have been shaping vegetation structures in this climatically, topographically, and geologically diverse country. These gaps in our knowledge represent an opportunity for ecologists, geneticists, evolutionary biologists, conservation biologists, and other experts to investigate the biodiversity status and the complex ecological processes involved in structuring vegetation dynamics so as to help take effective conservation actions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7567763 | PMC |
http://dx.doi.org/10.1016/j.pld.2020.04.004 | DOI Listing |
Environ Monit Assess
January 2025
Institute of Geography, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04001, Košice, Slovak Republic.
In recent decades, global climate change and rapid urbanization have aggravated the urban heat island (UHI) effect, affecting the well-being of urban citizens. Although this significant phenomenon is more pronounced in larger metropolitan areas due to extensive impervious surfaces, small- and medium-sized cities also experience UHI effects, yet research on UHI in these cities is rare, emphasizing the importance of land surface temperature (LST) as a key parameter for studying UHI dynamics. Therefore, this paper focuses on the evaluation of LST and land cover (LC) changes in the city of Prešov, Slovakia, a typical medium-sized European city that has recently undergone significant LC changes.
View Article and Find Full Text PDFSci Rep
January 2025
College of Forestry, Guizhou University, Guiyang, 550025, Guizhou, China.
Evaluating and predicting how carbon storage (CS) is impacted by land use change can enable optimizing of future spatial layouts and coordinate land use and ecosystem services. This paper explores the changes in and driving factors of Zunyi CS from 2000 to 2020, predicts the changes in CS under different development scenarios, and determines the optimal development scenario. Woodland and farmland are the main land use types in Zunyi.
View Article and Find Full Text PDFJ Environ Manage
December 2024
HUN-REN Institute of Soil Sciences, Centre for Agricultural Research, Fehérvári út 132-144, 1114, Budapest, Hungary.
Understanding the comprehensive impacts of environmental factors on soil organic carbon (SOC) and soil inorganic carbon (SIC) in different land use types is of great significance for sustainable soil management. Least absolute shrinkage and selection operator (LASSO) and structural equation modelling were applied to reveal the driving mechanism of SOC, SIC and the ratio between SOC to SIC (SOC/SIC) in three major land use types (forest, grassland and farmland) in a forest-grassland ecotone (FGE) of Inner Mongolia, Northeast China. Mean annual temperature (MAT), mean annual temperature (MAP) and Enhanced Vegetation Index (EVI) were selected by LASSO as the three most important environmental factors affecting SOC, SIC and SOC/SIC in all land use types.
View Article and Find Full Text PDFMethodsX
June 2025
State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing 100875, China.
Sci Total Environ
December 2024
School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan 250101, China.
Terrestrial ecosystems have vital impacts on soil carbon sequestration, but under disturbances from anthropogenic activities, the typical indicator combinations of SOC distribution in coastal areas remain unclear. On the basis of surface soil sampling and calculations of related eco-environmental indices in the Yellow River Delta (YRD), we performed geostatistical analysis combined with Spearman's correlation analysis, principal component analysis (PCA), and hierarchical clustering analysis (HCA) to explore the spatial heterogeneity of soil organic carbon (SOC) and influential spatiotemporal factors. Overall, the results revealed that in the seaward direction of the Yellow River, the SOC concentration decreased from west to east, with a low mean value of 5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!